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1. Introduction

By now, AdS/CFT has become a standard tool in theoretical physics for the study of gauge

theories at strong coupling. In many “stringy” models of gauge dynamics fundamental

matter is included by embedding a set of “flavor branes” in addition to the “glue/color

branes.” In such a setup, the strings connecting only to the “glue branes” are in the adjoint

of the U(Nc) group, giving gauge particles (multiplets), and those connecting only to the

“flavor branes” are in the adjoint of U(Nf ), giving the mesons (meson multiplets), and those

connected to both the “flavor” and “glue” branes are in the fundamental representation
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of both the U(Nc) and U(Nf ) groups, giving the quarks (matter/quark multiplets). Anti-

quarks are obviously depicted by similar strings with the opposite orientation.

In principle for large Nc and large Nf one could go to a combined near horizon limit,

translate the branes into fluxes1 and derive the gravity background that is a holographic

dual of a gauge system with gluons and quarks ( and, if the model is supersymmetric, their

supersymmetric partners). However, in practice such models are being constructed using

the probe approximation. In this approximation one uses a gravity background built from

the near horizon limit of a large Nc glue branes and adds to it a set of Nf flavor probe

branes. The basic assumption of the probe approximation is that for the case of Nf ≪ Nc

the backreaction of the probes on the background can be neglected. The flavor physics is

then extracted by analyzing the effective action that describes the flavor branes in the glue

background, namely the DBI action plus the CS action. This practice was introduced in [1]

in the context of the AdS5 ×S5 model, for a confining background in [2] and subsequently

in a large variety of other models [3 – 5]. Exceptions to this are certain fully backreacted

non critical models like [6 – 8], and [9].

A landmark holographic model of chiral symmetry and chiral symmetry breaking is

the model of Sakai and Sugimoto [10]. This model is based on the incorporation of a

stack of Nf D8 and Nf anti- D8 flavor branes into the background of near extremal D4

branes [11]. In the latter background one compactifies one of the world volume coordinates

of the D4 branes on a circle of radius R. For energies E ≪ 1/R the background describes

a four dimensional system with gluon degrees of freedom plus contaminating Kaluza Klein

modes. The profile of the flavor branes determined by the DBI action is that of a U shape.

This provides a simple geometrical picture of chiral symmetry breaking, namely, for large

radial direction (see figure 2), which corresponds to the UV limit of the gauge theory,

the stack of the D8 branes and of the anti-D8 branes are separated and hence there is a

UL(Nf ) × UR(Nf ) symmetry, and in the IR limit the two stacks merge one into the other

and thus only the diagonal U(Nf ) survives as a symmetry. A variety of physical properties

of meson and baryon physics has been extracted from the model. These include the massive

meson spectrum, the massless Goldstone pions [10], certain decay rates [12] as well as the

thermal behavior of hadrons [13, 14].

The validity of the model [10], is the same as all other probe models: Nf ≪ Nc. To

contact to real hadron physics, one obviously is interested in the case where the number

of flavors is similar to that of the colors and both are not large. To get down to small Nc

one will have to invoke a full string theory rather than a effective gravity model. However,

increasing the ratio of Nf/Nc can still be done in the context of an effective field theory,

provided we go beyond the probe approximation and incorporate the backreaction of the

flavor branes on the gravity background. This may enable us to determine the flavor

dependence of certain physical properties of the gauge theory which we expect to be Nf

dependent, for example the beta function, or the ratio of viscosity to entropy density of

1Bearing in mind that one must keep the open string spectrum associated with the flavor branes, even

though they are producing macroscopic flux. Such a case is a full backreaction, but not a decoupling limit.

Recall that global symmetries of the field theory translate into gauge symmetries in the gravity: gauging a

large Nf flavor group using supergravity alone is unfeasible.
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the quark-gluon fluid [15].2

Similar studies for localized backreactions in D3-D7 systems include [17 – 21]. In [17],

very general framework for studying type IIB supergravity with metric/five form and holo-

morphic dilaton/axion. The work of [18 – 20] studied when the D7 branes are located at

singular points in manifolds, and [21] studied the form of the solution to the equations fol-

lowing from the D3-D7 system and effects on other probe branes in such backgrounds. All

these studies worked using the supergravity alone, while here we will derive delta function

source terms from an action of the form

SBulk + K8(SDBI + SCS). (1.1)

We will use this action to determine how to source the bulk fields. Although we obtain

the full equations of motion from this, we will study their solutions in a perturbative limit.

Therefore, while we are going beyond the probe approximation, we are still confined to

the regime Nf ≪ Nc for the simple reason that we want the series in powers of Nf/Nc to

converge quickly.

In fact there is an even more important motivation to explore the model of [10] beyond

the probe approximation, and that is the issue of the stability of the model. One may won-

der whether the model is stable only in the probe approximation and that the backreaction

of the probe branes on the background does not destabilize the setup. A simplified picture

of the model is that of the circle of the compactified direction with the two endpoints of the

stacks of probe branes and anti branes which can be represented as a +Nf charge located

at one point on the circle and −Nf charge located at the antipodal point. In this simplified

“electrostatic” setup if one of the charges gets a slight perturbation in one direction it will

be attracted to the opposite charge and will not be driven back to its original location.

Moreover, the antipodal setup described in [10] has been generalized to a family of setups

where the separation distance between the brane and anti-brane is taken to be L ≤ πR.

For these cases the “electrostatic instability” is even more severe. The question is therefore

whether this naive intuition is justified and the backreaction of the probe branes indeed

destabilizes the model. On the other hand there is a naive argument why the perturbative

backreacted system should be stable and non tachyonic. Since the gauge holographic dual

of the model before purturbing it has a spectrum with a mass gap ( apart from the pions),

a small a small perturbation cannot bridge the gap and produce tachyonic modes [22].

Further, one may wonder what happens to the the dilaton tadpole condition, given

that this is a D8 D̄8 on a circle, and both branes and anti branes source the dilaton in the

same way. Hence, for these codimension one flavor branes one anticipates that the dilaton

will have a cusp behavior at the location of the probe branes as well as a cusp (and not an

anti-cusp) at the anti-brane. It seems naively that there is no way to sew together these

two cusps.

Thus the goal of this paper is to compute the leading order backreacted background,

and address the stability, and the dilaton tadpole. To do so, we write down the full action

2In [16], the leading order correction in Nf/Nc of this property was determined in the context of a model

with D7 branes in near extremal Ads5 ×S5 background. However, in this model it was shown that the zero

mode, which is equivalent to smearing, is all that is necessary to this level in Nf/Nc.
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of the system (of the form in (1.1)) which is composed of the action of massive type

IIA supergravity and the nine dimensional DBI +CS actions associated with the the D8

flavor branes. At this point one often invokes a smearing of the flavor branes along their

transverse direction [23 – 25] which renders the combined action into a ten dimensional

one. This approach simplifies the analysis by turning the equations of motion (EOMs)

into ordinary differential equations (ODEs) of some radial variable. However, we expect

that certain physical questions may not be answered using this procedure, for example the

stability discussed above. Thus we avoid using the smearing technique and we keep the

flavor branes as localized objects. This yields delta function source terms for the equations

of motion of the graviton, dilaton and the F(10) RR field strength form associated with

the D8 branes. The complexity of these equations is increased, relative to the smearing

technique, because the EOMs are now partial differential equations (PDEs); the relevant

functions must depend on the coordinate(s) transverse to the flavor brane.3

We solve these equations perturbatively to the leading order in Nf/Nc. We take 3

cases for the background to help address the questions in stages, and gain intuition for how

the solutions should behave.

We first solve for the simplified system of a decompacitfied transverse coordinate of

the D8 branes, which has been studied in its own right in [26, 27](see figure 1 (a)). For

this case we were able to find exact solutions of the partial differential equations. To our

surprise we have found that whereas the solutions for the perturbations of some background

fields behave, as we have expected, with a cusp at the location of the probe branes (a “Λ”

shape), for other the behavior is of an inverted cusp dressed with a double hump structure

(an “m”, see figure 3). We explore the ranges where we expect the supergravity to be a

good description and find that u ≫ ℓ4
s/R

3
D4, and that the perturbative results are good

up to u ≪ 1/Qf ≡ 4πℓs/(gsNf ). Further, from this study, it becomes plausible that

compactifying the x4 direction is possible, as the functions die off at large x4.

Next, we address the compactified (but extremal) case both to view the effects of

compactification, but also as a rough approximation of the “cigar” case at large u (see

figure 1 (b)). We first treat this case where we sum over the images of the uncomactified

case, and then as a Fourier decomposition. From this we see that there is no issue with the

dilaton tadpole constraint: the two cusps meets smoothly. We find that the decompactified

limit emerges at large u. Both methods are applied because, although both series always

converge, one series converges very quickly at large u, while the other converges quickly at

small u.

Finally we analyze the system of the near extremal D4 branes. We find that in this

case the perturbation theory is good for u ≪ 1/Qf which is generically stronger than the

u3 ≪ R3
D4/g

4
s supergravity regime. Further, we find that the supergravity description is

valid near u = UK , with the additional constraint (UK/RD4)
3/4Qf ≪ 1/ℓs. This translates

into the requirement that (Tst/M
2
gb)1/2λ4Nf/Nc ≪ 1 where Tst is the string tension, Mgb

is the typical glueball mass, and λ4 = g2
4Nc is the ’t Hooft coupling. For large values of the

3For this added complication, though, we simplify the equations by using a perturbative approach. In

some sense, this is complimentary to smearing: one smears the branes to obtain non-linear ODEs to solve;

we instead perturb the equations to obtain linear PDEs.
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Figure 1: The three cases studied: a) the uncompactified x4 case, b) the compactified x4 case,

and c) the near extremal “cigar” case.

radial direction the solution is obviously like that of the extremal compactified case. We

use a Fourier decomposition to show that a finite expansion around the tip of the cigar is

possible, and then implement this expansion for the first few terms.

Once we have established the perturbative solutions, we proceed to analyze the stability

of the system. We first show that the solution of the embedding of the flavor brane at

the probe level persists also in the leading order backreaction. We further show that

the fluctuations of the embedding, which correspond to scalar mesons in the dual gauge

theory, are non tachyonic. Hence we shown that the system is stable at least for an

action that is quadratic in the fluctuations. This is due to a cancelation between the

electrostatic repulsion (CS action) and the gravitational attraction (DBI action). Hence,

the above analogy with an electrostatic problem is not quite justified: the electric repulsion

is canceled by a gravitational attraction. The only other force is that of the tension of the

brane, which is restorative. The corrections to this force, while interesting, cannot change

the qualitative feature of stability while the perturbative analysis is valid (however, the

effects of the non-perturbative backreaction is still an open question).

The paper is organized as follows. In the next section (2) we briefly review the general

setup of the problem, namely, the Sakai Sugimoto [10] model and the massive type IIA

supergravity action [28, 29]. In section 3 we write the supergravity EOMs that incorporate

the backreaction of the probe branes. We then introduce an ansatz for the metric which we

substitute into the equations. The perturbative parameter is defined, and these equations

are expanded. The gauge invariance, in the form of small coordinate transformations, of

the system is discussed. In section 4 we present the solutions of the backreacted EOM. We

start with the solutions for the uncompactified case, and then by summing over images the

solutions for the compactified extremal case is constructed. We also use Fourier analysis

to study this case. This enables us to determine the UV behavior of the near extremal

case because the geometries are identical at large radius. The third step is to write down

the solutions for the near extremal case in the region close to the horizon. In the following
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section we analyze the stability of the system. We first show that the solution of the EOMs

that follow from the backreacted DBI+CS action are the same as those of the unperturbed

solution. Finally we shown that the spectrum of fluctuations around this embedding is

tachyon free and hence we conclude that to the leading order in Nf/Nc the system is stable.

2. Brief review of the general setup

Before we start the analysis of the backreaction of the flavor branes, we briefly review

the two main ingredients of the general setup of the problem, namely, the Sakai Sugimoto

model and the action of the massive type IIA supergravity. The reader familiar with these

topics should skip to the next section.

2.1 Sakai-Sugimoto (SS) model

Constructing holographic models duals of gauge dynamics that admits confinement is by

now a relatively easy task. Incorporating flavor chiral symmetry, on the other hand, turns

out to be more complicated. A prototype model that includes both phenomena is the

Sakai-Sugimoto model [10]. It is a model of a holographic dual for a 3 + 1 dimensional

gauge theory with a continuous SU(Nf )× SU(Nf ) flavor chiral symmetry which is sponta-

neously broken. It is based on the incorporation of Nf D8-branes and Nf anti-D8-branes

into Witten’s model [11]. The latter describes the near horizon limit of Nc D4-branes, com-

pactified on a circle of radius R (x4 ≡ x4 + 2πRx) with anti-periodic boundary conditions

for the fermions. The D8-branes are placed at x4 = 0 and the anti-D8-branes at x4 = L.

The gauge theory dual of this SUGRA setup is a 4 + 1 dimensional SU(Nc) maximally

supersymmetric gauge theory, compactified on a circle with anti-periodic boundary condi-

tions for the adjoint fermions, and coupled to Nf left-handed fermions in the fundamental

representation of SU(Nc) localized at x4 = 0, and to Nf right-handed fermions in the

fundamental representation localized at x4 = L.

The basic assumption of the model is that in the limit of Nf ≪ Nc one can ignore the

back-reaction of the Nf D8 branes and Nf anti-D8 branes. As mentioned above the goal

of the present work is to examine in details the back-reaction of the D8 and anti-D8 on the

background. With the probe assumption the closed type IIA string background is given by:

ds2 =

(

u

RD4

)3/2
[

−dt2 + δijdxidxj + f(u)dx2
4

]

+

(

RD4

u

)3/2 [ du2

f(u)
+ u2dΩ2

4

]

,

F(4) =
3R3

D4

gs
Ω4, eφ = gs

(

u

RD4

)3/4

, R3
D4 ≡ πgsNc l3s , f(u) ≡ 1 −

(

UK

u

)3

,

(2.1)

where t is the time direction and xi (i = 1, 2, 3) are the uncompactified world-volume coor-

dinates of the D4 branes, x4 is a compactified direction of the D4-brane world-volume which

is transverse to the probe D8 branes, dΩ2
4 is the metric of a unit four-sphere and ǫ4 is its

volume form, and gs is related to the 4 + 1 dimensional gauge coupling by g2
5 = (2π)2gsls.

The submanifold spanned by x4 and u has the topology of a cigar with u ≥ UK , and
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requiring that this has a non-singular geometry gives a relation between UK and Rx,

Rx =
2

3

(

R3
D4

UK

)1/2

. (2.2)

The parameters of this gauge theory, the five-dimensional gauge coupling g5, the low-

energy four-dimensional gauge coupling g4, the glueball mass scale Mgb, and the string

tension Tst are determined from the background (2.1) in the following form:

g2
5 = (2π)2gsls, g2

4 =
g2
5

2πRx
= 3

√
π

(

gsUK

Ncls

)1/2

, Mgb =
1

Rx
,

Tst =
1

2πl2s

√
gttgxx|u=UK

=
1

2πl2s

(

UK

RD4

)3/2

=
2

27π

g2
4Nc

R2
x

=
λ5

27π2R3
x

, (2.3)

where λ5 ≡ g2
5Nc, Mgb is the typical scale of the glueball masses computed from the

spectrum of excitations around (2.1), and Tst is the confining string tension in this model

(given by the tension of a fundamental string stretched at u = uK where its energy is

minimized). The gravity approximation is valid whenever λ5 ≫ Rx, otherwise the curvature

at u ∼ UK becomes large. Note that as usual in gravity approximations of confining gauge

theories, the string tension is much larger than the glueball mass scale in this limit. At

very large values of u the dilaton becomes large, but this happens at values which are of

order N
4/3
c (in the large Nc limit with fixed λ5), so this will play no role in the large Nc

limit that we will be interested in. The Wilson line of this gauge theory (before putting in

the D8-branes) admits an area law behavior [30], as can be easily seen using the conditions

for confinement of [31].

The gauge theory dual to the SUGRA background (2.1) is in fact not four dimensional

even at energies lower than the Kaluza-Klein scale 1/Rx since the masses of the glueballs

are also Mgb = 1/Rx, namely, there is no real separation between the confined four-

dimensional fields and the higher Kaluza-Klein modes on the circle. As discussed in [11],

in the opposite limit of λ5 ≪ Rx, the theory approaches the 3 + 1 dimensional pure Yang-

Mills theory at energies small compared to 1/Rx, since in this limit the scale of the mass

gap is exponentially small compared to 1/R.

The probe flavor D8-branes span the coordinates t, xi,Ω4, and trace a curve u(x4) in

the (x4, u)-plane. Near the boundary at u → ∞ we want to have Nf D8-branes localized

at x4 = 0 and Nf anti-D8-branes (or D8-branes with an opposite orientation) localized

at x4 = L. Naively one might think that the D8-branes and anti-D8-branes would go

into the interior of the space and stay disconnected; however, these 8-branes do not have

anywhere to end in the background (2.1), so the form of u(x4) must be such that the D8-

branes smoothly connect to the anti-D8-branes (namely, u must go to infinity at x4 = 0

and at x4 = L, and du/dx4 must vanish at some minimal u coordinate u = u0). Such a

configuration spontaneously breaks the chiral symmetry from the symmetry group which

is visible at large u, U(Nf )L × U(Nf )R, to the diagonal U(Nf ) symmetry. Thus, in this

configuration the topology forces a breaking of the chiral symmetry.

To determine the profile of flavor probe branes, one has to solve the equations of motion

of that follow from the DBI + CS action that describes the probe branes. It is easy to

– 7 –
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check that the CS term in the D8-brane action does not affect the solution of the equations

of motion. More precisely, the equation of motion of the gauge field has a classical solution

of a vanishing gauge field, since the CS term includes terms of the form C5 ∧ F ∧ F and

C3 ∧ F ∧ F ∧ F . So, we are left only with the DBI action. The induced metric on the

D8-branes is

ds2
D8 =

(

u

RD4

)3/2
[

−dt2 + δijdxidxj
]

+

(

u

RD4

)3/2
[

f(u) +

(

RD4

u

)3 u′2

f(u)

]

dx2
4

+

(

RD4

u

)3/2

u2dΩ2
4 (2.4)

where u′ = du/dx4. Substituting the determinant of the induced metric and the dilaton

into the DBI action, we obtain (ignoring the factor of Nf which multiplies all the D8-brane

actions that we will write):

SDBI = T8

∫

dtd3xdx4d
4Ωe−φ

√

− det(ĝ) =
T̂8

gs

∫

dx4u
4

√

f(u) +

(

RD4

u

)3 u′2

f(u)
, (2.5)

where ĝ is the induced metric (2.4) and T̂8 includes the outcome of the integration over all

the coordinates apart from dx4. The simplest way to solve the equation of motion is by

using the Hamiltonian of the action (2.5), which is conserved (independent of x4):

u4f(u)
√

f(u) +
(

RD4
u

)3
u′2

f(u)

= constant = u4
0

√

f(u0), (2.6)

where on the right-hand side of the equation we assumed that there is a point u0 where the

profile u(x4) of the brane has a minimum, u′(u = u0) = 0.4 We need to find the solution

in which as u goes to infinity, x4 goes to the values x4 = 0, L; this implies
∫

dx4 = 2

∫

du

u′ = L (2.7)

with u′ given (as a function of u) by (2.6) (note that u is a double-valued function of x4 in

these configurations, leading to the factor of two in (2.7)). The form of this profile of the

D8 brane is drawn in figure 2(a). Plugging in the value of u′ from (2.6) we find

L =

∫

dx4 = 2

∫ ∞

u0

du

u′ = 2R
3/2
D4

∫ ∞

u0

du
1

f(u)u3/2
√

f(u)u8

f(u0)u8
0
− 1

=
2

3

(

R3
D4

u0

)1/2√

1 − y3
K

∫ 1

0
dz

z1/2

(1 − y3
Kz)

√

1 − y3
Kz − (1 − y3

K)z8/3
, (2.8)

where yK ≡ uK/u0. Small values of L correspond to large values of u0. In this limit we

have yK ≪ 1 leading to L ∝
√

R3
D4/u0. For general values of L the dependence of u0 on

L is more complicated.

4This type of analysis was done previously for Wilson line configurations. See, for instance, [30].
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L

Figure 2: The dominant configurations of the D8 and anti-D8 probe branes in the Sakai-Sugimoto

model at zero temperature, which break the chiral symmetry. The same configurations will turn

out to be relevant also at low temperatures. On the left a generic configuration with an asymptotic

separation of L, that stretches down to a minimum at u = u0, is drawn. The figure on the right

describes the limiting antipodal case L = πRx, where the branes connect at u0 = UK .

There is a simple special case of the above solutions, which occurs when L = πRx,

namely the D8-branes and anti-D8-branes lie at antipodal points of the circle. In this case

the solution for the branes is simply x4(u) = 0 and x4(u) = L = πRx, with the two branches

meeting smoothly at the minimal value u = u0 = UK to join the D8-branes and the anti-

D8-branes together. This type of antipodal solution is drawn in figure 2(b). It was shown

in [10] that this classical configuration is stable, by analyzing small fluctuations around this

configuration and checking that the energy density associated with them is non-negative.

In general for L < πRx, there is a family of smooth configurations characterized by L

or by the minimal value of u, u0. This class of solution is shown in 2(a)

The Sakai-Sugimoto model has 3 dimensionful parameters: λ5, L and Rx, and gravity

is reliable whenever λ5 ≫ Rx. The physics depends on the two dimensionless ratios of

these two parameters; In the gravity limit the mass of the (low-spin) mesons is related to

1/L [13] while the mass of the (low-spin) glueballs is related to 1/Rx. As discussed above,

in the limit λ5 ≪ Rx this theory approaches (large Nc) QCD at low energies. This remains

true also after adding the flavors, at least when L is of order Rx.

The thermal phases of the model where analyzed in [13, 14]. The back-reaction of the

flavor brane at non zero temperature is not addressed in the present paper and will be

described in a future publication.

2.2 Massive type IIA and 8 branes

One expects p + 1 dimensional objects to naturally couple to a p + 1 form potential.

Therefore, one expects a D8 brane to couple to a nine form potential. Conventional type

IIA supergravity has no such form, and so some modification of the theory is necessary to

describe the backreaction of D8 branes. This extension was first found by Romans [28],

and then further generalized to admit localized D8 solutions in [29]. The relevant kappa
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symmetric worldvolume actions were constructed in [32]. Further studies of D8 (-Dp) brane

backgrounds (systems) are discussed in [33 – 38].

There exists another massive type IIA, constructed in [39]. This and the Romans’ type

IIA were shown to be the only “Higgs type” supersymmetric extensions of massless type

IIA in [40], although a third was suggested in [39]. The massive type IIA given in [39] does

not admit localized supersymmetric eight-branes, and so we restrict our attention to the

theory of Romans [28, 29] which we simply refer to as massive type IIA.

The bosonic part of the action of the massive type IIA supergravity takes the form5

SIIAM
= SNS + SR + SCS + SM

SNS =
1

2κ2
10

∫

d10x
√−ge−2φ

(

R + 4∂µφ∂µφ − 1

2 · 3!H3 · H3

)

SR = − 1

2κ2
10

∫

d10x
√−g

(

1

2 · 2! F̃2 · F̃2 +
1

2 · 4! F̃4 · F̃4

)

(2.9)

SCS = − 1

2κ2
10

∫

d10x
1

2

1

2! · 4! · 4!ǫ
µ1···µ10Bµ1µ2F̂µ3···µ6F̂µ7···µ10

SM = − 1

2κ2
10

∫

d10x
√−g

1

2
M2 +

1

2κ2
10

∫

MF10

where · denotes contraction of indices with inverse metrics, and ǫ is antisymmetric in indices

and takes values ±1. In the above action Fn+1 = dAn and

F̃2 = F2 + MB2

F̂4 = F4 +
1

2
MB2 ∧ B2 (2.10)

F̃4 = F4 − A1 ∧ H3 +
1

2
MB2 ∧ B2.

One notes that from the above definitions, F2 may be absorbed completely by a shift in

B2, but only when M 6= 0. One views this as a “Higgsing” where the degrees of freedom

associated with F2 become the longitudinal modes of a massive B2. The equation of motion

for F2, therefore, must only be imposed in the massless limit. In appendix A, we include

the equation of motion associated with A1 so that an M → 0 limit is clear. In the next

section we turn to including sources in the action.

3. Backreaction of D8 branes

In this section, we will find the equations of motion that govern the D4-D8 systems of in-

terest, including the contribution from the DBI + CS brane action. We present our ansatz,

and the perturbative parameter we will use to linearize the equations, and finally present

the separated linearized equations. Further, we find the small coordinate transformations

that leave the form of our ansatz unchanged (to the order we are working): these are gauge

transformations of the linearized equations.

5We use the notation of chapter 12 of Polchinski [41]
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3.1 Finding the equations: ansatz and separation

For the remainder of the paper, we will be concerned with D4-D8 systems, and because

neither of these branes source (directly) either Aµ or Bµν , we set them to zero. After

truncation to the Aµ = 0, Bµν = 0 sector, the equations of motion for the type IIA massive

supergravity are the following:

Rµν + 2∇µ∇νφ =
e2φ

2!4!

(

4Fµ
α2α3α4Fνα2α3α4 −

1

2
gµν

(

F(4)

)2
)

− e2φ

4
gµνM2

gµν∇µ∇νφ = gµν (∇µφ) (∇νφ) − 1

4
R

∇α1F
α1α2α3α4 = 0 (3.1)

∂µM = 0

M = ∗F(10)

0 =
1√−g

ǫβ1β2α1α2α3α4ρ1ρ2ρ3ρ4Fα1α2α3α4Fρ1ρ2ρ3ρ4 .

Note that the equation of motion for A1 in the appendix is trivially satisfied. Again, one

must only impose it’s equation of motion in the massless limit. However, the equation of

motion for Bµν imposes a constraint, arising from the Chern Simons term B ∧ F4 ∧ F4,

on the four form (the last of the above equations). This constraint is easily satisfied for

simple 4-form field strengths. Also, note that we have used the dilaton equation of motion

(EOM) to eliminate R from the Einstein equation. This will be important below when we

derive the equations when a brane source is present.

We now turn to the modification of the equations of motion (3.1) by adding

−Kp

(
∫

dp+1ξe−φ
√

−gp +

∫

Ap+1

)

(3.2)

to the action. Here we use gp to denote the pullback metric on the p + 1 dimensional

submanifold defined by Xα(ξ),

(gp)ab =
∂Xµ

∂ξa

∂Xν

∂ξb
gµν (3.3)

and K is the appropriate constant involving the p-brane tension. In this action, we assume

that it is consistent to set the world volume U(1) gauge field to zero, as well as ignoring any

additional Chern Simons terms (which is appropriate for the cases we wish to consider).

There are two types of fields in this action: those that represent open string degrees

of freedom (e.g. Xα(ξ)); and those representing closed string degrees of freedom (e.g. gαβ).

Of course when varying with respect to the closed string degrees of freedom, 10D delta

functions appear, of which p +1 are integrated leaving behind a (10− (p + 1)) dimensional

delta function source term, as we should expect. Varying the above action with respect to

the p + 1 form potential adds a delta function source to the form fields equation of motion

of the generic form
1

(2κ2
10)

(d ∗ F ) − Kpδ
10−p−1 (ǫ10 · ǫp+1)

(p + 1)!
= 0. (3.4)
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Note that the product ǫ10 · ǫp+1 is sensitive to the orientation of the submanifold defined

by Xα. For example, in the case of the SS model with the antipodal embedding of the D8

branes, there is both a positive delta function and a negative delta function in x4 accounting

for the orientation reversal of the brane (it is oriented in the ±u direction). For D8 branes,

however, one should replace d ∗ F with dM because M is the term that appears with F10

in the action. Hence, M is in fact piecewise constant in backgrounds with localized D8, as

we will see below.

We restrict ourselves to embedding functions of the form Xa(ξ) = ξa and the remaining

Xi are arbitrary constants. Varying the full action with respect to the dilaton and graviton

is now straightforward, and the equations of motion are

Rµν + 2∇µ∇νφ − e2φ

2!4!

(

4Fµ
α2α3α4Fνα2α3α4 −

1

2
gµν

(

F(4)

)2
)

+
e2φ

4
gµνM2 (3.5)

+
K82κ

2
10

2
eφ

√−gp|ξi=xi√−g

(

gab
p

∂Xα

∂ξa

∂Xβ

∂ξb
|ξi=xi gαµgβν − 1

2
gµν

)

δ (xα − Xα(x)) = 0

R + 4gµν∇µ∇νφ − 4gµν (∇µφ) (∇νφ) − K82κ
2
10

2
eφ

√−gp|ξi=xi√−g
δ (xα − Xα(x)) = 0

1

(2κ2
10)

dM − K8δ (xα − Xα(x))
(ǫ10 · ǫ9)

9!
= 0

∗F(10) = M.

with other equations of motion left unchanged. The delta functions appearing above may

be simplified by taking them to be functions only of x4, δ (xa − Xa(x)) ≡ ∆(x4), which is

appropriate for the antipodal embedding in the Sakai Sugimoto model. As expected, only

the RR couplings to the branes are sensitive to the orientation of the branes. Further, the

epsilons appearing above take values ±1, and do not contain factors of
√−g.6

The tensor structure of the Einstein equations can be easily read: the delta function

strength is proportional to the metric and dilaton, and comes with a + sign for a direction

along the D8 brane, and comes with a − sign for those not along the D8 brane. Although

above we have written the effect of a D8 brane, the above arguments work also for an

arbitrary p brane: it simply changes which RR form field equation of motion gets the delta

function source, and how many directions of the Einstein’s equations get (−) vs. (+) delta

functions.

For the remainder of this work, we will take the solution to the M and F10 equations

6As a simple check of the above signs and numerical factors, one can simply check the following. The

coefficient in front of gab
p ∂aXα∂bX

βgαµgβν can be checked against that of Rµν . Before using the dila-

ton equation of motion, the Einstein equations contain − 1
2
Rgµν , and this coefficient must match that of

gab
p ∂aXα∂bX

βgαµgβν, except that one multiplies the latter by an additional −K82κ2
10

√
−gp/

√
−g. This is

because they are obtained from similar terms in the action, 1
2κ2

10

√
−ge−2φR and −K8e

−φ√−gp respectively.

The factor in the dilaton equation is also obtained similarly, as the coefficient of R is obtained by varying
1

2κ2

10

√
−ge−2φR w.r.t. φ and the delta function coefficient is obtained by varying −K8

√
−ge−φ, and so a

factor of 1/2 arises. The second part of the delta function term in Einstein’s equations is similarly found

by checking that one adds 1
2
gµν times that of the dilaton term.
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of motion to be

M = ±2κ2
10K8/2 = ± Nf

4πℓs
≡ ±Qf

gs

∗F10 = M (3.6)

where the + is used on one side of the D8, and − is used on the other.7

The remainder of the paper will be devoted to solving the remaining equations of

motion perturbatively, and the perturbative control parameter will be explained shortly.

However, at this point an important note is in order: delta functions in codimension

10− (p+1) 6= 1 have singularities at the location of the delta function. Codimension one is

special in that the Green’s function is of the form |x|,8 and hence is finite at the source. We

therefore expect that the perturbative approach is most natural for D8 branes, as the back

reaction can be made small, even close to the brane. Hence, the perturbative approach

that we take may not be as natural for higher codimension branes.

To define the small parameter in our expansion, we make the following observations.

Given the solution of the M,F10 sector, the new (relative to the massless IIA equations)

terms in the equations of motion come with the powers of 2κ2
10K8e

φ ∼ gsNf . This is what

we shall use as a control parameter for our perturbative expansion. From now on, we will

simply take 2κ2
10K8/2 ≡ Qf/gs as the definition of our small parameter Qf . Another way of

phrasing this is that in the holographic limit, there is a scale Rc such that gs ∼ (Rc/ls)/Nc

where Rc/ls ≫ 1 is large but held fixed. Hence, one may view our perturbation as limit

on gsNf ∼ Nf/Nc, which is the basis for the probe approximation.

To solve the equations, we will still need to take an ansatz, and we motivate it as

follows. The eight brane doesn’t directly couple to F4, and further the SO(5) symmetry

of the 4 sphere is not broken for this brane configuration. Hence, we take that there is no

change in F4 to leading order in Qf . Further, because we take the solution M ∝ ±Qf/gs,

so that in the Einstein equations, the term gµνM2e2φ ∼ O
(

Q2
f

)

may be ignored.

Therefore, we assume that only metric and dilaton perturbations are necessary, so we

take a general ansatz of the form

ds2 = e2A(u,x4)
(

−dt2 + dx2
i

)

+ e2B(u,x4)dx2
4 + e2G(u,x4)du2 + e2C(u,x4)dΩ2

4

φ(u, x4) =
1

2
φ̂(u, x4) + 2A(u, x4) + 2C(u, x4) (3.7)

F(4) = QcΩ4

where Qc = 3R3
4/gs = 3πNcl

3
s , and Ω4 is the volume form of the unit four sphere. It is clear

that the F4 equations are trivially satisfied: dF4 = 0 because Ω4 is closed, and d ∗ F4 = 0

because ∗F4 is some function of x4 and u times du ∧ dx4 ∧i dxi, and is therefore closed.

7This terminology only makes sense for branes of dimension D − 1, as such branes split the space into

disjoint regions.
8we refer to this behavior as a cusp
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In the above, we will expand the above functions as

A(u, x4) = A0(u) + QfA1(u, x4) B(u, x4) = B0(u) + QfB1(u, x4)

C(u, x4) = C0(u) + QfC1(u, x4) G(u, x4) = G0(u) + QfG1(u, x4) (3.8)

φ̂(u, x4) = φ̂0(u) + Qf φ̂1(u, x4)

where the 0 subscripted functions are solutions of the Qf = 0 equations. We linearize and

explain how to separate them for the Sakai Sugimoto model in appendix B, and summarize

the results here. One must solve the decoupled system

3∂2
uF1 +

3(4u3 − U3
K)∂uF1

u(u3 − U3
K)

+
gsQcu

3∂2
x4

F1

(u3 − U3
K)2

− 54uF1

(u3 − U3
K)

+
2u(Qcgs)

2
3

√
3

(u3 − U3
K)

√

√

√

√

u

(Qcgs)
1
3

(

1 − U3
K

u3

)∆ = 0 (3.9)

3∂2
uF2 +

3(4u3 − U3
K)∂uF2

u(u3 − U3
K)

+
gsQcu

3∂2
x4

F2

(u3 − U3
K)2

−4u(Qcgs)
2
3

√
3

(u3 − U3
K)

√

√

√

√

u

(Qcgs)
1
3

(

1 − U3
K

u3

)∆ = 0 (3.10)

−4∂2
uφ̂1 −

4

3

u3Qcgs∂
2
x4

φ̂1
(

u3 − U3
K

)2 − 2
(

u3 − 7U3
K

)

∂uφ̂1

u
(

u3 − U3
K

) − 36uU3
K φ̂1

(

u3 − U3
K

)2

+
4
3u(Qcgs)

2
3

√
3

(u3 − U3
K)

√

√

√

√

u

(Qcgs)
1
3

(

1 − U3
K

u3

)∆ = 0 (3.11)

where

∆ =

{

δ (x4) + δ (x4 − πRx) if x4 = x4 + 2πRx

δ (x4) if x4 non-compact
(3.12)

and then identify the physical degrees of freedom

A1 = −1

5
F1 +

1

10
F2 −

3

10
φ̂1

C1 =
1

10
F1 +

1

5
F2 −

1

10
φ̂1

B1 = G1 = −1

5
F1(u, x4) +

1

5
F2(u, x4) −

1

10
φ̂1(u, x4)

−2

5
u∂uφ̂1(u, x4) +

3

5

φ̂1(u, x4)U
3
K

(u3 − U3
K)

(3.13)

φ1 =
1

2
φ̂1 + 2A1 + 2C1.

Above, we have made the obvious notation that φ1 is the first order correction to the

physical dilaton. One may read off the combined solution by plugging in these to the

equations (B.7) in the appendix.

– 14 –



J
H
E
P
0
2
(
2
0
0
8
)
0
0
1

3.2 Gauge freedom

Here we identify the gauge (coordinate transformation) freedom as those transformations

in u and x4 that leave the metric diagonal (preserves the form of our ansatz). Indeed,

φ̂1 → φ̂1 −
5

2

λ(u, x4)

u

A1 → A1 +
3

4

λ(u, x4)

u

B1 → B1 +
3

4

λ(u, x4)

u
+

3

2

U3
Kλ(u, x4)

u(u3 − U3
K)

−1

3

∫

Qcgs(∂x4∂x4λ(u, x4))

u3
(

1 − U3
K

u3

)2 du (3.14)

G1 → G1 −
3

4

λ(u, x4)

u
− 3

2

U3
Kλ(u, x4)

u(u3 − U3
K)

+ ∂uλ(u, x4)

C1 → C1 +
1

4

λ(u, x4)

u

leaves all equations of motion unchanged, and is exactly a coordinate change in u and x4,

namely

u → u + λ(u, x4) (3.15)

x4 → x4 −
1

3

∫

Qcgs(∂x4λ(u, x4))

u3
(

1 − U3
K

u3

)2 du

Hence, one of the degrees of freedom above is pure gauge. However, there is an added com-

plication. If we eliminates φ̂1 using such a gauge transformation, the cusp in φ̂1 generates

a delta function in the gauge transformation for B1, and hence B1 is no longer a smooth

function: it contains a delta function. Hence, we conclude that for the unsourced equations

one may choose which degree of freedom to eliminate, but in the sourced equations, only

B1 may be eliminated. However, as shown in appendix B, it is more convenient to not

eliminate B1 completely, but rather to take B1 = G1 as the choice.

Given the above transformations, we can immediately see that F1 and F2 of the last

subsection are gauge independent. The remaining gauge dependent quantities φ̂1, B1 and

G1 do not admit a gauge independent combination. Further, given the equations (3.13),

only the equation B1 = G1 is not gauge covariant. Therefore, we will sometimes refer to

this as a gauge fixing.

4. Solutions: the linearized backreaction

Here we will analyze the differential equations of the last section in three separate cases:

1. UK = 0 decompactification limit: In this case we take UK = 0, in a limiting sense

of the background. In this limit R2
x ∝ R3

(D4)/UK becomes infinite, and so x4 decom-

pactifies.
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2. UK = 0, x4 compactified: In this case, we note that while the UK = 0 limit has

decompactified x4, one still has the isometry x4 → x4+ constant. Hence, one may

orbifold by this isometry and compactify x4. We will parameterize this compact-

ification using the same radius, R2
x = (4/9)R3

(D4)/UK . One way to think of this

parametrization is that we have taken the spacetime to be that of UK = 0 while still

requiring that x4 is compactified: we choose to parameterize the compactification

of x4 such that we may compare easily to the UK 6= 0 case. In this way, we have

taken the spacetime to be the cylinder to which the cigar asymptotes, and so this

analysis gives the u ≫ UK behavior of the UK 6= 0 case. In all compact x4 cases, we

will be considering the antipodal embedding, L = πRx, which for concreteness we

parameterize by the embedding x4 = 0, πRx.

3. UK 6= 0: In this case, we analyze the equations as is. We make some basic comments

about the nature of the Fourier transformed equations, and note that the point

u = UK is a regular singular point, and hence a finite convergent series about this

point exists. We expand the solution about the tip of the cigar.

4.1 UK = 0 decompactification limit

In the UK → 0 limit, the differential equations become

3∂2
uF1 +

12

u
∂uF1 −

54

u2
F1 +

Qcgs

u3
∂2

x4
F1 +

2(3Qcgs)
1
2 ∆

u
3
2

= 0

3∂2
uF2 +

12

u
∂uF2 +

Qcgs

u3
∂2

x4
F2 −

4(3Qcgs)
1
2 ∆

u
3
2

= 0 (4.1)

−4∂2
uφ̂1 −

2

u
∂uφ̂1 −

4Qcgs

3u3
∂2

x4
φ̂1 +

4(3Qcgs)
1
2 ∆

3u
3
2

= 0.

In the above equations, we take all functions to be functions of the form

Fi(u, x4) = uKi(q) q =
x4

√
u

(Qcgs)
1
2

φ̂1(u, x4) = uK3(q). (4.2)

This has the effect of changing the delta function in x4 into a delta function in q as ∆(x4) =

∆′(q)
√

u/(Qcgs). Further, we take just a single brane so that ∆′ = δ(q). Taking the re-

sulting equations, and multiplying them by u, we obtain ODE’s with delta function sources

(

3

4
q2 + 1

)

∂2
qK1 +

33

4
q∂qK1 − 42K1 + 2

√
3δ(q) = 0

(

3

4
q2 + 1

)

∂2
qK2 +

33

4
q∂qK2 + 12K2 − 4

√
3δ(q) = 0 (4.3)

(

3

4
q2 + 1

)

∂2
q K3 + 3q∂qK3 +

3

2
K3 −

√
3δ(q) = 0
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One constructs the delta function solution from the vacuum solution. The vacuum solutions

to these equations may be written

K1 = Ka

(

1

42
+

1

2
q2 + q4

)

+Kb

(

3402q13 + 22113q11 + 57915q9 + 77220q7 + 54054q5 + 18018q3 + 2002q
)

(3q2 + 4)
9
2

K2 = Kc

280
3 q ln

(

√

3q2 + 4 + q
√

3
)

+
√

3q2 + 4
√

3
(

q6 + 19
3 q4 + 58

3 q2 − 128
9

)

(3q2 + 4)
9
2

+Kd

280
3 q ln

(

√

3q2 + 4 − q
√

3
)

−
√

3q2 + 4
√

3
(

q6 + 19
3 q4 + 58

3 q2 − 128
9

)

(3q2 + 4)
9
2

K3 = Ke
q

3q2 + 4
+ Kf

1

3q2 + 4
(4.4)

To obtain even (in q → −q) convergent (for large q) quantities with cusps, we may construct

the combinations

K1 =
−256

√
3

1001

(

− 3402

3
9
2

(

1

42
+

1

2
q2 + q4

)

+

∣

∣

∣

∣

∣

(

3402q13 + 22113q11 + 57915q9 + 77220q7 + 54054q5 + 18018q3 + 2002q
)

(3q2 + 4)
9
2

∣

∣

∣

∣

∣

)

K2 = 210
√

3
|q|

(3q2 + 4)
9
2

(4.5)

+N2

280
3 q ln

(√
3q2+4+q

√
3√

3q2+4−q
√

3

)

+ 2
√

3q2 + 4
√

3
(

q6 + 19
3 q4 + 58

3 q2 − 128
9

)

(3q2 + 4)
9
2

K3 = 2
√

3
|q|

3q2 + 4
+ N3

1

3q2 + 4
.

The above have been written with the cusp solution first, and then an even function that

converges (with coefficients Ni). We have not been able to determine physical boundary

conditions that fix Ni, and so we will leave them arbitrary when possible.

To graph them, however, we take Ni = 0 and show these in figure 3. Further, note

that the function K3 has a larger characteristic width, as it only converges as 1/q. This

will be important when we compactify x4.

The height of the above functions grows as u because the peak happens at a fixed

value of q, giving just a constant contribution times the dressing factor of u. Thus, one

expects the perturbative approach to be valid up to u ≪ 1/Qf . This will be generic for later

sections as well, as the decompactified behavior emerges at large u in the following sections.

We also wish to characterize the width of the “spike” in each graph. One way is

to make sure that variations happen on scales larger than string scale. The slope of the

graphs is largest in the vicinity of the spike, and this slope is determined by its q = 0

– 17 –



J
H
E
P
0
2
(
2
0
0
8
)
0
0
1

0

0.05

0.1

0.15

0.2

0.25

–2 –1 0 1 2

q

(a) K1(q)

0

0.2

0.4

0.6

0.8

–3 –2 –1 0 1 2 3 4

q

(b) K2(q)

0

0.1

0.2

0.3

0.4

0.5

–8 –6 –4 –2 0 2 4 6 8 10

q

(c) K3(q)

Figure 3: Graphs of Ki(q), setting N2 = N3 = 0.

behavior, and is therefore just a constant. Therefore, the x4 slope is simply dφi/dx4 =

Qfu3/2R
−3/2
D4 ×constant. The physical length that this corresponds to, however, is ds =

(u/RD4)
(3/4)dx4, and we require that dφi/ds ≪ 1/ℓs. This gives u3 ≪ R3

D4/(Q
4
f ℓ4

s) ∝
R3

D4/(g
4
sN4

f ). Recalling the conditions above u ≪ 1/Qf and Nc ≫ Nf , this condition

follows, and so is not a new piece of information.

One may also wish to characterize the width when the linear part is no longer the dom-

inant, and so characterize the width of when other “features” become important. This oc-

curs when the q coordinate becomes order 1, and so translates into x4 ∝ R
3/2
D4 /u1/2. Again,

translating this into a physical distance we find s = R
3/4
D4 u1/4 ≫ ℓs, where we have required

that this distance be greater than string scale. This gives a lower bound on u, however, it is

the same lower bound coming from the Ricci scalar R ∝ 1/(uR3)1/2 ≪ 1/ℓ2
s for the super-

gravity approximation. We see that we trust the supergravity to describe the backreaction

above u ≫ ℓ4
s/R

3
D4, and that the perturbative results are good up to u ≪ 1/Qf .

Of course one may take the last two constraints on u and turn them into a unitless

constraint on the parameters. We find that this is 1/Qf ≫ ℓ4
s/R

3
D4 → g2

sNf/Nc ≪ 1 which

we can see is weaker than the other constraints Nf/Nc ≪ 1, gs ≪ 1.

4.2 UK = 0 with x4 compactified

Here we will examine the UK = 0 case with x4 compactified as explained at the beginning

of section 4. However, a few brief words are in order. We will do this case in two ways: by
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summing the images from the last section, and by Fourier decomposing them. These two

approaches are complimentary because one expects the sum on images to converge quickly

for large u (when the images are well separated), and as we will see, the Fourier modes con-

verge extremely quickly as u → 0. Further, we will be considering the antipodal embedding,

L = πRx, which for concreteness we parameterize by the embedding x4 = 0, πRx.

Sum images of decompacitification. Looking at the Fourier transform (below), there

is no problem with compactifying x4, however the solution for K3 above seems to have a

problem. Note that if we take the above K3 and sum over images in q for some fixed value

of u, we expect a divergence, as the function only converges as 1/q. However, switching

back to the u, x4 language, we find that the nth image of K3 is

φ̂n,1 =

3 u
3
2

U
1
2

K

∣

∣

∣

x4
Rx

+ πn
∣

∣

∣

u
UK

(

x4
Rx

+ πn
)2

+ 9
→ 3

√
u
√

UK

π |n| (4.6)

where the right hand side is it the large n behavior. This, however, is actually a homoge-

neous solution to the original differential equation we started with. This suggests a solution

to this difficulty, and we take instead

φ̂n,1 =

3 u
3
2

U
1
2

K

∣

∣

∣

x4
Rx

+ πn
∣

∣

∣

u
UK

(

x4
Rx

+ πn
)2

+ 9
− 3

√
u
√

UK

π |n + Cn|
(4.7)

where this is just adding a zero mode of the differential equation. The sum of this function

in n converges, as the large n behavior is order 1/n2.

Now we make one more final comment. To fix Cn, we require that

limu→∞ φ̂1(u, x4 = πRx/2) = 0. This is roughly requiring that when you are as far away

from the branes as possible that the perturbation should be 0. The solution to this con-

straint is Cn = 1/2. Of course a different set of Cn could be chosen in such a way as to not

affect the sum: this, by definition, is unphysical, as none of the field values would change.

Therefore, for the compactified case, we take

φ̂1(u, x4) =

∞
∑

n=−∞









3 u
3
2

U
1
2

K

∣

∣

∣

x4
Rx

+ πn
∣

∣

∣

u
UK

(

x4
Rx

+ πn
)2

+ 9
− 3

√
u
√

UK

π
∣

∣n + 1
2

∣

∣









. (4.8)

The other functions we take N2 = 0 and simply sum on images. We plot these in figure 4.

In figure 4 we have summed many fewer modes for F1 because this function converges

very fast (as 1/q14), and so fewer images are needed. Further, we can see that one must

go to much larger values of u to obtain well separated features for φ̂1. One could have

guessed this from the results of the decompactified case: the characteristic width of the

functions K3(q) (associated with φ̂1) is much larger than for the other functions K1 and

K2. However, one can see the shape of the functions approaching the decompactified case:
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Figure 4: F1/UK as a function of x4/Rx for u/UK = 100 using images from n = −50 · · ·50, F2/UK

as a function of x4/Rx for u/UK = 100, n = −500 · · ·500 and φ̂1/UK as a function of x4/Rx for

u/UK = 10, 000, n = −500 · · ·500.

F1 has a single cusp like −|x4| and φ̂1 and F2 have cusps like |x4| surrounded by two

maxima. We show plots for various u in the next subsection where we consider the Fourier

transform of the equations.

Fourier decomposition. We start with the same equations as the last subsection

3∂2
uF1 +

12∂uF1

u
+

gsQc∂
2
x4

F1

u3
− 54F1

u2
+

2(Qcgs)
2
3

√
3

u2

√

u

(Qcgs)
1
3

∆ = 0 (4.9)

3∂2
uF2 +

12∂uF2

u
+

gsQc∂
2
x4

F2

u3
− 4(Qcgs)

2
3

√
3

u2

√

u

(Qcgs)
1
3

∆ = 0 (4.10)

−4∂2
uφ̂1 −

4

3

Qcgs∂
2
x4

φ̂1

u3
− 2∂uφ̂1

u
+

4
3(Qcgs)

2
3

√
3

u2

√

u

(Qcgs)
1
3

∆ = 0 (4.11)

– 20 –



J
H
E
P
0
2
(
2
0
0
8
)
0
0
1

and Fourier transform them

3∂2
uFm,1 +

12∂uFm,1

u
− m2 27UK

4 Fm,1

u3
− 54Fm,1

u2
+

9
√

UK(1 + (−1)m)

2πu
3
2

= 0 (4.12)

3∂2
uFm,2 +

12∂uFm,2

u
− m2 27UK

4 Fm,2

u3
− 18

√
UK(1 + (−1)m)

2πu
3
2

= 0 (4.13)

−4∂2
uφ̂m,1 +

4

3

m2 27UK

4 φ̂m,1

u3
− 2∂uφ̂m,1

u
+

6
√

UK(1 + (−1)m)

2πu
3
2

= 0. (4.14)

where we have assumed that x4 is periodic with

x4 = x4 + 2πRx, R2
x =

4

27

Qcgs

UK
=

4

9

R3
D4

UK
(4.15)

as in the last section (the reason for this parameterization is explained at the beginning of

section 4).

The above equations can be brought to a simple and familiar form by the following

change of coordinates and functions

Fm,1(u) =

Gm,1

(

√

9m2UK

u

)

u
3
2

Fm,2(u) =

Gm,2

(

√

9m2UK

u

)

u
3
2

φ̂m,1(u) = Gm,3

(
√

9m2UK

u

)

u
1
2

u =
9m2UK

ρ2

The above differential equations become

ρ2∂2
ρGm,1 + ρ∂ρGm,1 +

(

−ρ2 − 92
)

Gm,1 = −972(1 + (−1)m)m4U
5
2
K

2πρ4
(4.16)

ρ2∂2
ρGm,2 + ρ∂ρGm,2 +

(

−ρ2 − 32
)

Gm,1 =
1944(1 + (−1)m)m4U

5
2
K

2πρ4
(4.17)

∂2
ρGm,3 − Gm,3 =

6(1 + (−1)m)U
1
2
K

2πρ2
. (4.18)

These then are of two forms: modified Bessel equations with a simple monomial source,9

and an exponential function with a simple monomial source. The general solution to the

9Solutions to these equations are known as (modified) Lommel functions. However they are related to

generalized hypergeometric functions. We opt to use the notation of hypergeometric series, as these are

more general, and perhaps more familiar to the reader.
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above equations is [42]

Gm,1 = C1I9(ρ) + C2K9(ρ) − 972(1 + (−1)m)m4U
5
2
K

2πρ4(−13)(5)
1F2

(

1;−11

2
,
7

2
;
ρ2

4

)

(4.19)

Gm,2 = C3I3(ρ) + C4K3(ρ) +
1944(1 + (−1)m)m4U

5
2
K

2πρ4(−7)(−1)
1F2

(

1;−5

2
,
1

2
;
ρ2

4

)

(4.20)

Gm,3 = C5e
ρ + C6e

−ρ +
3(1 + (−1)m)(eρEi(1, ρ) + e−ρRe (Ei(1,−ρ))U

1
2
K)

2π
(4.21)

where I and K are the modified Bessel functions, 1F2 is the generalized hypergeometric

function,10 and Ei(a, x) is the exponential integral function.

Ei(a, x) =

∫ ∞

1
e(−yx)y−ady (4.22)

and we have used Re (Ei(1,−ρ)) = Ei(1,−ρ)+ πi to remove the −πi associated with going

around the branch point at x = 0.

Here, one may worry about the convergence of the above Fourier decomposition because

the coefficient above depend on m in positive powers. However, recall that we wish to sum

on m for fixed u, not fixed ρ. In fact the factor of m completely cancels out of the above

coefficients once returning to the u coordinate (ρ4 ∝ m4/u2). The only m dependence comes

about in the arguments of the homogeneous and non homogeneous terms. Therefore, we

may effectively analyze convergence of the Fourier modes as convergence in the variable

ρ → ∞, as this is the limit to which m → ∞ corresponds. The inhomogeneous solution

to (4.21) is indeed convergent and admits a power series expansion about ρ = ∞. Therefore

one does not wish to turn on the growing exponential (this would not converge summing

on m), and the shrinking exponential is simply negligible. Hence, we may set C5 = C6 = 0

for all m and get a convergent series.

The remaining equations, however, deserve some special treatment. The bessel equa-

tion (and the equation for 1F2) have an essential singularity at ρ = ∞. Therefore we

consider the asymptotics of the above functions for large ρ:

Iν(ρ) → 1√
2πρ

eρ

Kν(ρ) → 1√
2πρ

e−ρ (4.23)

and [43]

1F2(a1; b1, b2;x) → (4.24)

Γ(b1)Γ(b2)√
πΓ(a1)

(−x)
1
2
(a1−b1−b2) cos

(

π

2

(

a1 − b1 − b2 +
1

2

)

+ 2
√
−x

)

.

10we do in fact mean 1F2, not 2F1
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After substituting in x = ρ2/2 and choosing appropriate branches for the square roots

((−1)1/2 = +i), one finds

1F2(1;−11
2 , 7

2 ; ρ2

4 )

ρ4
→

√
π
√

2

2772ρ
1
2

eρ

1F2(1;−5
2 , 1

2 ; ρ2

4 )

ρ4
→ −

√
π
√

2

60ρ
1
2

eρ. (4.25)

We therefore use the following combinations

Gm,1 = C2K9(ρ) − 972(1 + (−1)m)m4U
5
2
K

2π(−13)(5)





1F2

(

1;−11
2 , 7

2 ; ρ2

4

)

ρ4
− πI9(ρ)

1386



 (4.26)

Gm,2 = C4K3(ρ) +
1944(1 + (−1)m)m4U

5
2
K

2π(−7)(−1)





1F2

(

1;−5
2 , 1

2 ; ρ2

4

)

ρ4
+

πI3(ρ)

30



 (4.27)

Gm,3 = C6e
−ρ +

3(1 + (−1)m)(eρEi(1, ρ) + e−ρRe (Ei(1,−ρ))U
1
2
K)

2π
. (4.28)

It is now a simple matter to replace the definition of ρ above and sum the series. Although

we offer no analytic proof here, the above functions can be seen to converge quickly enough

for large m. We note that because the above functions are functions of m2/u, the conver-

gence in m and u → 0 are connected. As promised, the Fourier expansion converges more

quickly for smaller u.

In the last two equations, it should be noted that for large u, the particular solution

selected dominates over the remaining inhomogeneous solution. However, in the first equa-

tion, the homogeneous solution dominates. In the following, we still set C2 = C4 = C6 = 0.

Solving the m = 0 case is trivial, but for completeness, we give the solutions for this

as well

F0,1 = −12u
1
2 U

1
2
K

65π
+ C0,5u

3 +
C0,6

u6

F0,2 = −24u
1
2 U

1
2
K

7π
+

C0,3

u3
+ C0,4 (4.29)

φ̂0,1 = −3U
1
2
K ln(u)u

1
2

π
+

6u
1
2 U

1
2
K

π
+ 2C0,1u

1
2 + C0,2 (4.30)

and we again set the unfixed constants above to 0.

We show here the plots of the physical fields φ1, A1, B1 = G1, C1 for the first 150 modes

in figure 5.

We may wish to ask what the long distance behavior is in u/UK . For this, we plot the

long distance behavior of the independent modes F1, F2, φ̂1 in figure 6.

The graphs in figure 6 are directly comparable to the plots in figure 4, however there

may be discrepancies between the two. For example, in figure 6 one notes that the function

φ̂ does not quite touch 0 at x4 = πRx/2 as it is required to for figure 4. This is merely a
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(a) φ1(u, x4)/UK (b) A1(u, x4)/UK

(c) B1(u, x4)/UK (d) C1(u, x4)/UK

Figure 5: Graphs of φ1/UK , A1/UK , B1/UK = G1/UK , C1/UK graphed as a function of x4/Rx.

Each graph represents a different u value of u = 1, 5, 10, 20, 40 in ROYGB order. All graphs use

the first 150 modes (m = 0 . . . 150), of which only even m are non zero.

matter of setting the correct zero mode for the homogenous equation in this case. However,

to make the plots match exactly in all cases, one may, if one wishes, Poisson resum the

results from the last subsection, which will fix all constants above in terms of the constants

from the last subsection. We, however, have not done this.

We should note also that the above analysis allows for more generality that summing

the images. In the decompactification case a very specific functional form was taken,

to which many homogenous solutions do not conform. This property is inherited when

summing on images. By the orthogonality and completeness of the trigonometric functions,

we are guaranteed to generate all solutions to the original gravitational ansatz when using

the Fourier analysis.

4.3 UK 6= 0

Fourier decomposition. Fourier decomposing the general equations at the beginning

of section 3 gives

3∂2
uFm,1 +

3(4u3 − U3
K)∂uFm,1

u(u3 − U3
K)

− m2 27UK

4 u3Fm,1

(u3 − U3
K)2
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Figure 6: F1/UK as a function of x4/Rx for u/UK = 100, F2/UK as a function of x4/Rx for

u/UK = 100 and φ̂1/UK as a function of x4/Rx for u/UK = 10, 000 (bottom) all graphed using the

first 400 modes (m = 0 . . . 400).

− 54uFm,1

(u3 − U3
K)

+
9u

√
UK(1 + (−1)m)

2π(u3 − U3
K)

√

√

√

√

u
(

1 − U3
K

u3

) = 0 (4.31)

3∂2
uFm,2 +

3(4u3 − U3
K)∂uFm,2

u(u3 − U3
K)

− m2 27UK

4 u3F2

(u3 − U3
K)2

−18u
√

UK(1 + (−1)m)

2π(u3 − U3
K)

√

√

√

√

u
(

1 − U3
K

u3

) = 0 (4.32)

−4∂2
uφ̂m,1 −

2
(

u3 − 7U3
K

)

∂uφ̂m,1

u
(

u3 − U3
K

) − 36uU3
K φ̂m,1

(

u3 − U3
K

)2 +
4

3

m2u3 27UK

4 φ̂m,1
(

u3 − U3
K

)2

+
6u

√
UK(1 + (−1)m)

2π(u3 − U3
K)

√

√

√

√

u
(

1 − U3
K

u3

) = 0. (4.33)

where now the periodicity of x4

x4 = x4 + 2πRx, R2
x =

4

27

Qcgs

UK
=

4

9

R3
D4

UK
(4.34)

is dictated by smoothness of the gravitational solution near the tip of the cigar (u → UK).
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Recall that we will be considering the antipodal embedding L = πRx, so that the delta

functions are located at x4 = 0, πRx.

It is clear from the above that these functions are functions only of u/UK as UK is the

only dimensionful parameter left. Under the coordinate change û = u
UK

and the redefinition

of fields Fi = F̂i × UK and φ̂1 = φ̃1 × UK we find

3∂2
ûF̂m,1+

3(4û3 − 1)∂ûF̂m,1

û(û3 − 1)
− 27

4

m2û3F̂m,1

(û3 − 1)2
− 54ûF̂m,1

(û3 − 1)
+

9û3(1 + (−1)m)

2π(û3 − 1)
3
2

= 0 (4.35)

3∂2
ûF̂m,2+

3(4û3 − 1)∂ûF̂m,2

û(û3 − 1)
− 27

4

m2û3F̂m,2

(û3 − 1)2
− 18û3(1 + (−1)m)

2π(û3 − 1)
3
2

= 0 (4.36)

−4∂2
ûφ̃m,1−

2
(

û3 − 7
)

∂ûφ̃m,1

û (û3 − 1)
− 36ûφ̃m,1

(û3 − 1)2
+9

m2û3φ̃m,1

(û3 − 1)2
+

6û3(1 + (−1)m)

2π(û3 − 1)
3
2

= 0. (4.37)

The above differential equations are difficult to solve, even excluding the inhomoge-

neous piece. The homogeneous parts of the equations can be seen to have 5 regular singular

points at û = 0, ω0, ω1, ω2,∞ where ω = −1
2 +

√
3

2 i is a third root of unity. However, as

all of the singularities are regular, one may go about finding a Laurent series expansion

about any given point (using standard textbook techniques). Rather than doing this in the

Fourier basis, we find that it is easier to leave the functions of x4 intact, and expand the

function about a specific u value, and then solve for the functions of x4 multiplying each

power individually.

u → UK expansion. First, for expanding around the point u = UK , and to make

contact with much of the literature, we change to the coordinate z defined by

u3 = U3
K + UKz2. (4.38)

In these coordinates, the (non algebraic) equations read

Qcgs(U
2
K + z2)∂2

x4
F1

(U3
K + UKz2)

1
3 z4UK

+
27

4

(U2
K + z2)∂2

zF1

UKz2
+

27

4

(U2
K + 3z2)∂zF1

UKz3

+
54F1

UKz2
−

2(3Qcgs)
1
2

√

(UK(U2
K + z2)4)

1
3 ∆

UKz3
= 0 (4.39)

Qcgs(U
2
K + z2)∂2

x4
F2

(U3
K + UKz2)

1
3 z4UK

+
27

4

(U2
K + z2)∂2

zF2

UKz2
+

27

4

(U2
K + 3z2)∂zF2

UKz3

−
4(3Qcgs)

1
2

√

(UK(U2
K + z2)4)

1
3 ∆

UKz3
= 0 (4.40)

−4

3

Qcgs(U
2
K + z2)∂2

x4
φ̂1

(U3
K + UKz2)

1
3 z4UK

− 9

1

(U2
K + z2)∂2

z φ̂1

UKz2
− 3

(2z2 − 9U2
K)∂zφ̂1

UKz3

−36UK φ̂1

z4
+

4
3 (3Qcgs)

1
2

√

(UK(U2
K + z2)4)

1
3 ∆

UKz3
= 0 (4.41)

B1 = G1 = −1

5
F1 +

1

5
F2 −

3

5

∂zφ̂1(U
2
K + z2)

z
+

1

10

φ̂1(6U
2
K − z2)

z2
(4.42)
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after a bit of cleaning up.

Now, to expand about z = 0, we expand the functions multiplying each differential

operator that acts on the fields Fi, φ̂ above.

Qcgs∂
2
x4

F1

z4
+

27

4

UK∂2
zF1

z2
+

27

4

UK∂zF1

z3
− 54F1

UKz2
+

2(3Qcgs)
1
2
√

UK∆

z3
= 0 (4.43)

Qcgs∂
2
x4

F2

z4
+

27

4

UK∂2
zF2

z2
+

27

4

UK∂zF2

z3
− 4(3Qcgs)

1
2
√

UK∆

z3
= 0 (4.44)

−4

3

Qcgs∂
2
x4

φ̂1

z4
− 9UK∂2

z φ̂1

z2
+

27U2
K∂zφ̂1

z3
− 36UK φ̂1

z4
+

4
3 (3Qcgs)

1
2
√

UK∆

z3
= 0 (4.45)

B1 = G1 = −1

5
F1 +

1

5
F2 −

3

5

U2
K∂zφ̂1

z
+

3

5

U2
K φ̂1

z2
(4.46)

We will now assume that all of the Fourier modes of the above fields have expansions about

z = 0 with a finite number of negative powers. This allows us to simply count powers in z

and neglect any terms that are not of leading order. For example, this allows us to drop

the term F1/z
2 above. The rest of the equation is homogeneous in z only if F1 ∼ z as

z → 0. Likewise, we conclude that to leading order Fi = zLi(x4) and φ̂1 = zL3(x4). To

leading order in z, the above equations become

∂x4∂x4L1(x4) +
27UK

4Qcgs
L1(x4) + 2

√

3UK

Qcgs
∆ = 0 (4.47)

∂x4∂x4L2(x4) +
27UK

4Qcgs
L2(x4) − 4

√

3UK

Qcgs
∆ = 0 (4.48)

∂x4∂x4L3(x4) +
27UK

4Qcgs
L3(x4) −

√

3UK

Qcgs
∆ = 0 (4.49)

B1 = G1 = z
1

5
(L2 − L1) . (4.50)

These are easily solved.

L1(x4) = −4

3

∣

∣

∣ sin

(

x4

Rx

)

∣

∣

∣ (4.51)

L2(x4) = +
8

3

∣

∣

∣
sin

(

x4

Rx

)

∣

∣

∣
(4.52)

L3(x4) = +
2

3

∣

∣

∣ sin

(

x4

Rx

)

∣

∣

∣ (4.53)

R2
x =

4Qcgs

27UK
(4.54)

where Rx is the periodicity of x4 ≡ x4 + 2πRx defined before. Note that this is exactly

the kind of behavior one would expect because z| sin (x4/Rx)| = |y1| when switching to

“cartesian” y2 = z cos (x4/Rx), y1 = z sin (x4/Rx) coordinates, and is similar qualitatively

to a D8 in flat space.
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One may continue this process and in fact get the above functions to the next order.

From the general differential equation in z, one may easily read that the expansion will

be in terms of odd powers of z. This is because the functions being expanded are all

(U2
K + z2)n, and so coefficients of even (odd) powers only mix with coefficients of other

even (odd) powers. The next term, therefore, should be of order z3. We solve the resulting

equations, and find

F1(z, x4) = −2

3
z sin

( |x4|
Rx

)

− 17

108

z3
(

3 sin
(

|x4|
Rx

)

− sin
(

3|x4|
Rx

))

U2
K

+ O(z5)

F2(z, x4) = 2 × 2

3
z sin

( |x4|
Rx

)

− 14

108

z3
(

3 sin
(

|x4|
Rx

)

− sin
(

3|x4|
Rx

))

U2
K

+ O(z5)

φ̂1(z, x4) =
1

3
z sin

( |x4|
Rx

)

+ O(z5). (4.55)

One may analyze the above functions for the various length scales of these cusps. One finds

that they slope is directly limited by dφi/ds = dφi/dy1(UK/RD4)
3/4 ∼ (UK/RD4)

3/4Qf ≪
1/ℓs. This gives (g4

5Tst)
1/2Nf ∝ (Tst/M

2
gb)1/2λ4Nf/Nc ≪ 1.

Further, the onset of new “features” is at z2 = U2
K , which we require to be a large

physical length: U2
K(RD4/UK)3/2 ≫ ℓ2

s, which is equivalent to the original condition λ5 ≫
Rx given for the supergravity limit. Hence, we trust the supergravity approximation to

describe the features near u → UK .

5. Analysis of equations: stability

A few words are in order to explain how we will address the issue of stability. We will not

solve the eigenvalue problem, numerically or otherwise, to establish the four dimensional

masses for fluctuations as being positive definite with a mass gap. Instead, we will simply

show that to quadratic order in fluctuations, all actions are of the form (up to gauge)

∫

d5ξ

[

−F0(ξ;Qf ) −F1(ξ;Qf )

(

−(∂tM)2 +

3
∑

i=1

(∂xi
M)2

)

−F2(ξ;Qf )(∂ξ5M)2 −F3(ξ;Qf )M2

]

(5.1)

where M is a field describing the fluctuation, and

Fi(ξ;Qf = 0) > 0. (5.2)

This last statement is important, because it implies that anywhere the perturbative analysis

is valid that (to linear order in Qf )

Fi(ξ;Qf ) = Fi(ξ;Qf = 0)

(

1 +
Qf

Fi

(

∂Qf
Fi

)

|Qf=0

)

> 0. (5.3)
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The inequality holds because if the term added to the 1 must be small. If it were not

small, we would be forced to go beyond linear order in Qf , and hence the perturbative

approach would no longer be trusted. Therefore it does not change the sign of any of the

functions where the perturbative analysis is valid. Hence, the action that we have written

had positive definite hamiltonian

∫

d5ξ

[

F0(ξ;Qf ) + F1(ξ;Qf )

(

(∂tM)2 +
3
∑

i=1

(∂xi
M)2

)

+F2(ξ;Qf )(∂ξ5M)2 + F3(ξ;Qf )M2

]

(5.4)

simply because it is a sum of squares.

For this reason, what seems to be important is the presence of a cancelation between

the DBI and CS action at the order |M | (we expect such terms from the solutions above).

Of course another interesting question is what happens outside of the regime of validity

of the perturbative approach. This, however, is out of the scope of our present investigation,

although we hope to address this in some future work.

5.1 DBI and CS equations of motion: x4 = 0 (πRx) solution

Of course to expand an action, we must expand about some solution to the equations of

motion. For this reason, we briefly outline (and give more detail in appendix C) why x4 = 0

(x4 = πRx) is still a solution to the equations of motion. One may address this simply by

looking at the gauge invariant information in the equations of motion: namely the cusps.

The cusps in φ̂1, A1, G1 and C1 cannot be removed with a coordinate transformations, as

this would introduce delta functions into B1. In appendix C, we show that the cusp in B1,

which is pure gauge, does not enter. We can read off the behavior around the cusps11 to be

φ̂1 = fφ̂1
(u) +

1

2

√
3u

3
2

(

1 − U3
K

u3

)
1
2 |x4|

(Qcgs)
1
2

+ O(x2
4)

F1 = f1(u) − 1

2
2

√
3u

3
2

(

1 − U3
K

u3

)
1
2 |x4|

(Qcgs)
1
2

+ O(x2
4) (5.5)

F2 = f2(u) +
1

2
4

√
3u

3
2

(

1 − U3
K

u3

)
1
2 |x4|

(Qcgs)
1
2

+ O(x2
4)

simply by comparing the delta function source terms and the coefficient (a function of u) of

the ∂2
x4

term. The next order contributions are of order x2
4 because we require the functions

be even about x4 = 0 to obey the Z2 symmetry of the problem.

Now we need to find the equations of motion for the embedding functions Xµ resulting

from the action

−gsSB

Qf
=

∫

d9ξe−φ
√

−gp +

∫

A9. (5.6)

11at x4 = 0, similar conditions apply at x4 = πRx
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In the appendix, we show that the only interesting equation of motion is the one for X4,

and we find that this becomes

−
√

−gp
u− 3

4

gsR
− 3

4
D4

∂x4







u
3
2

(

1 − U3
K

u3

)
1
2 |x4|

(RD4)
3
2

+ O(x2
4)






(5.7)

−± ∂x4







√

−gp|x4|
1

gs

u
3
4

(

1 − U3
K

u3

)
1
2

R
3
4
D4

+ O(x2
4)







=−
√

−gp

u
3
4

(

1− U3
K

u3

)
1
2

R
3
4
D4gs

∂x4 (|x4|±|x4|)

where in the third line, we ignore the higher order in x4 corrections, as we will evaluate the

derivative at x4 = 0. Above we have also switched back to the more familiar gsQc = 3R3
D4

notation.

The term with the ± comes from the CS term, and may vanish for the − sign choice

above. We interpret this as putting a brane next to the backreacted branes. This tells that

the equations of motion are satisfied for a brane placed directly on top of the other branes.

If instead we had put an anti-brane, we would have found a constant force type potential,

and we take that this is a solution too (although we expect an open string tachyon for small

enough distances: our actions do not contain terms for strings ending on different branes).

Further, we should note that the above is a gauge independent statement. The cusps

in the functions A1, C1, G1, A(9) are independent of the gauge choice,12 and these were

the only functions that contribute above (see appendix C). Therefore, the leading |x4|
dependence is unaffected by small coordinate transformations. For this statement, it is

important that B does not appear: it’s values (cusps and all) are gauge dependent, while

the other functions are determined in a gauge covariant way. Recall that while φ̂1 is gauge

dependent, it’s cusp behavior is not: one may not remove any part of the cusp without

introducing unwanted delta functions into B1.

This gives that to lowest order, original embedding solution is still a solution to the

equations of motion. To truly consider the stability, however, we would like to know

whether this extremum of the action is a maximum or a minimum. For this we will need to

investigate the second order action about this point, and this will involve second derivatives

in x4, rather than just first derivatives. Hence the even functions that we were able to ignore

in the above discussion will enter.

12in any sense: small coordinate transformation or shifts of A(9) by a infinitely differentiable globally

exact form
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5.2 UK = 0 decompactification limit

We begin with the solutions for the decompactified case in the last section

Fi(u, x4) = uKi(q) q =
x4

√
u

(Qcgs)
1
2

φ̂1(u, x4) = uK3(q), (5.8)

where Ki are given in equation (4.5). We will want to construct the second order action

in x4 and so we will need Ki to second order in x4 ∝ q. We expand the Ki to obtain Fi

and φ̂1 and find

F1(u, x4) = uK1(q) =
256

1001
u −

√
3u

3
2 |x4|

(Qcgs)
1
2

+
768u2x2

4

143Qcgs

F2(u, x4) = uK2(q) = −N2

√
3

9
u +

2
√

3u
3
2 |x4|

(Qcgs)
1
2

+ N2
2
√

3u2x2
4

3Qcgs
(5.9)

φ̂1(u, x4) = uK3(q) = N3
u

4
+

1

2

√
3u

3
2 |x4|

(Qcgs)
1
2

− N3
3u2x2

4

16Qcgs

where we have dropped order O(x3
4) and higher terms.

We are now able examine stability of the decompactified limit by examining the second

order action. We start by writing the pullback metric as a function of X4(xµ, u)

ds2
p = e2A (ηµνdxµdxν) + e2Gdu2 + e2CdΩ2

4 + e2B
(

∂µX4 + ∂uX4du
)2

. (5.10)

We need the determinant of this metric to second order in X4, however it is easier not to

expand the above metric completely, and simply realize that

√

−gp =
√

−gp0

(

1 +
1

2
gab
p0hab

)

+ O((X4)4) (5.11)

where gp0 is constructed by dropping the last term in ds2
p, and hab is the symmetric tensor

defined by the last term in ds2
p. Evaluating this, we find

−
∫

d9ξe−φ
√

−gp = (5.12)

−
∫

d9ξe−φ+4A+4C+G

(

1 + e2(B−A) 1

2
ηµν∂µX4∂νX4 + e2(B−G) 1

2
∂uX4∂uX4

)

again, dropping order (X4)3 and higher. We now take the expansion of the functions

A = A0+QfA1, . . . and evaluate to zeroth and first order in Qf , using the above expansions
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about X4 = 0, and keeping only those terms second order in X4 or lower.

−
∫

d9ξe−φ
√

−gp =

−
∫

d9ξ
u4
(

Qcgs

3

)
1
2

gsu
3
2

[

1 − Qf

(

512

5005
+ N2

4
√

3

45
+ N3

9

20

)

u

+Qf

√
3u

3
2 |X4|√

Qcgs
+Qf

(

−1536

715
+N2

8
√

3

15
+N3

33

80

)

u2X2
4

Qcgs
(5.13)

+

(

1 − Qf

(

512

5005
+ N2

√
3

9
+ N3

11

20

)

u

)

1

2
ηµν∂µX4∂νX

4

+
3u3

Qcgs

(

1 − Qf

(

512

5005
+ N2

4
√

3

45
+ N3

9

20

)

u

)

1

2
∂uX4∂uX4

]

.

To this we must add the term coming from the RR coupling. To do so, we recognize that

Aµi|x4
= ∓

√

−gp
Qf

gs
eB |x4| (5.14)

satisfies the equations of motion for the nine form potential. We use the notation |x4 to

mean that the index for x4 has been omitted. The factor of −gp in (5.14) is constructed

using only the zeroth order in Qf metric pulled back. Further, this −gp only has corrections

of order O((X4)2), and so we may ignore them because of the |x4| already multiplying√−gp. Hence, to the order that we are working,

−
∫

A9 = −
∫

d9ξ(∓)u4 Qf

gs
|X4|. (5.15)

Thus, for the correct orientation of the probe brane, the |X4| term in the action completely

cancels,13 and the total action becomes

−
∫

d9ξe−φ
√

−gp =

−
∫

d9ξ
u4
(

Qcgs

3

) 1
2

gsu
3
2

[

1 − Qf

(

512

5005
+ N2

4
√

3

45
+ N3

9

20

)

u

+Qf

(

−1536

715
+ N2

8
√

3

15
+ N3

33

80

)

u2X2
4

Qcgs
(5.16)

+

(

1 − Qf

(

512

5005
+ N2

√
3

9
+ N3

11

20

)

u

)

1

2
ηµν∂µX4∂νX

4

+
3u3

Qcgs

(

1−Qf

(

512

5005
+N2

4
√

3

45
+N3

9

20

)

u

)

1

2
∂uX4∂uX4

]

.

13We interpret this as a brane next to the backreacted brane(s), rather than an anti brane next to the

backreacted brane(s).
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Although we can at this point find equations of motion for the above action, and

proceed with the analysis directly, we find it convenient to manipulate the above equation

a bit more. For this, we note that we can redefine the u coordinate as well as the field X4.

We find it convenient to do the following transformation

u = û + Qfλ1û
2

du = (1 + 2Qfλ1û)dû

X4(xµ, û) =

(

1 +
1

2
Qfλ2û

)

X̂4(xµ, û) (5.17)

(we do the u coordinate change first, and then the X transformation) and then for ease

of notation we simply drop the ˆ from the above. Again, we may only keep order Qf

or lower in the above expansion. After doing this, we will introduce terms of the form

Qfλ2f(u)X4∂uX4 = 1
2Qfλ2f(u)∂u((X4)2) which we integrate by parts. This affects the

coefficient of (X4)2. After doing so, we find that the new action is

−
∫

d9ξe−φ
√

−gp =

−
∫

d9ξ
u4
(

Qcgs

3

)
1
2

gsu
3
2

[

1 − Qf

(

512

5005
+ N2

4
√

3

45
+ N3

9

20
− 9

2
λ1

)

u

+Qf

(

−1536

715
+ N2

8
√

3

15
+ N3

33

80
− 11

8
λ2

)

u2X2
4

Qcgs
(5.18)

+

(

1 − Qf

(

512

5005
+ N2

√
3

9
+ N3

11

20
− 9

2
λ1 − λ2

)

u

)

1

2
ηµν∂µX4∂νX

4

+
3u3

Qcgs

(

1−Qf

(

512

5005
+N2

4
√

3

45
+N3

9

20
− 7

2
λ1−λ2

)

u

)

1

2
∂uX4∂uX4

]

.

The interpretation of λ1 and λ2 is that the correspond to coordinate transformations,

and so are actually arbitrary and one may choose these. The numbers N1 and N2 are

numbers that determine part of the profile of the backreaction of the branes, and so may

be constrained by some physical boundary conditions. Here, however, we simply note that

λ2 may be chosen to eliminate the (X4)2 term completely. This then leaves terms of the

form (1−QfuCi) times terms present when Qf = 0. Therefore, we conclude that when the

perturbative analysis is valid, all coefficients remain the same as the Qf = 0 case. Because

of this, one may simply argue that the hamiltonian of the above action is positive definite (it

is a sum of squares times positive coefficients) for the range of validity of the perturbative

analysis. Hence, we conclude that in the perturbative regime, the configuration is stable.

This depended on the leading order cancelation between the DBI and coupling to the

RR field. Other than this, the remaining terms were all present in the Qf → 0 limit

(up to gauge). In such a case, all corrections that are order Qf cannot change the signs

of coefficients, and so stability (in the range of validity for the perturbative approach) is

preserved. We will see this again in the next section.
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As a curious note, with an appropriate choice of Ni and λi, one can completely cancel

the leading order in Qf contribution to the above action.

5.3 Stability of the Sakai Sugimoto model

Above, and in appendix C, we show that X4 = 0,X4 = πRx is still a solution to the

equations of motion resulting from the DBI+CS action. To evaluate the second order

action for fluctuations, we change to the radial coordinate z defined by u3 = U3
K + UKz2,

and then to the “Cartesian” coordinates

y1 = z sin

(

x4

Rx

)

y2 = z cos

(

x4

Rx

)

(5.19)

which also allows for comparison with the analysis performed in [10]. Here the important

point is that we chose the gauge B1 = G1, and so the only change in the z, x4 plane is by

a conformal factor. Hence, much of the analysis of [10] follows through. We find that the

metric in these coordinates is written

ds2 = e2A1

(

u

RD4

)
3
2

(ηµνdxµdxν) + e2C1R
3
2
D4u

1
2 dΩ2

4 (5.20)

+e2G1
4

9

(

RD4

u

) 3
2
( [

1 − h(z)y2
1

]

dy2
1 +

[

1 − h(z)y2
2

]

dy2
2 − 2h(z)y1y2dy1dy2

)

.

where now all metric functions are written as functions of y1 and y2, and we have defined

the following functions

h(z) =
1

z2

(

1 − UK

u

)

u = u(z) =
(

U3
K + UKz2

)
1
3 (5.21)

z = z(y1, y2) =
√

y2
1 + y2

2 .

Here we have suppressed the factor of Qf for ease of notation, and will only reintroduce

it at the end. Taking the embedding y1(x
µ, u) one may compute the second order action

the same way as the UK = 0 decompactification piece. One writes the line element as

ds2 = ds2
1+ds2

2 where ds2
1 is diagonal and ds2

2 is already order y2
1, and so again one finds that

√

−gp =
√

−gp0

(

1 +
1

2
gab
p0hab

)

+ O((y1)
4). (5.22)

One may compute the DBI action easily now,

−K8

∫

d9ξe−φ
√

−gp = (5.23)

−2

3

K8R
3
2
D4U

1
2
KV4

gs

∫

d5ξ

(

u2e4A1+4C1+G1−φ1 +
2

9

R3
D4

u
e2A1+4C1+3G1−φ1ηµν∂µy1∂νy1

+
1

2

u3

UK
e4A1+4C1+G1−φ1

(

h(z)(y2
1 − 2y1y2ẏ1) + ẏ1

2
)

)
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where we have defined ∂y2y1 = ẏ1. Further, the above function u(y1, y2) still must be ex-

panded in y1. The term V4 is the volume of the unit four sphere, and d5ξ = dtdx1dx2dx3dy2.

We will integrate the term linear in ẏ1 by parts, but first we find it convenient to

introduce the following notation

A ≡ 4A1 + 4C1 + G1 − φ1 = 2A1 + 2C1 + G1 −
1

2
φ̂1 (5.24)

B ≡ 2A1 + 4C1 + 3G1 − φ1 = 2C1 + 3G1 −
1

2
φ̂. (5.25)

From the arguments in the last subsection, we expect the above combinations of fields to

have the following behavior about y1 = 0

A = A0(y2) +
2

3
|y1| + A2(y2)y

2
1 + · · ·

B = B0(y2) + · · · (5.26)

where in B we ignore higher corrections in y1 because its coefficient is already O(y2
1). In the

above, we have determined the expansion in A of order |y1| by considering the argument

in the u, x4 coordinates used to give equations (5.5), and then changing coordinates to the

y1, y2 variables.

In the following, we will have to evaluate u(y1, y2) at y1 = 0, and henceforth, we will

call this function uy. Similarly we define hy = h(z)|y1=0. Plugging in the above to the

second order action, and reintroducing Qf we find

−K8

∫

d9ξe−φ
√

−gp = (5.27)

−T̃

∫

d5ξ

[

(u2
y + y2

1)(1 + QfA0) +
2

9

R3
D4

uy
(1 + QfB0)η

µν∂µy1∂νy1

+
1

2

u3
y

UK
(1 + QfA0)ẏ

2
1

+Qf

(

u2
yA2 +

1

2

u3
y

UK
hyy2∂y2A0

)

y2
1 + Qfu2

y

2

3
|y1|
]

where we define

2

3

K8R
3
2
D4U

1
2
KV4

gs
≡ T̃ (5.28)

as in the work of [10]. It is easy to read off the result in [10] in the Qf = 0 limit; it is

the top two lines of the right hand side. As in the last sections, we now add to this the

contribution from
∫

A9. This is relatively easy to do, as we find

√−g =
4

9
R

3
2
D4U

1
2
Ku2

y



1 +
2

3

y2
1

u3
y

UK

+ O(y4
1)





√

g
S4 (5.29)

and so to second order in y1 we can simply take

Aµi|y1
= ∓Qf

gs

4

9
R

3
2
D4U

1
2
Ku2

y|y1|
(

1 + O(y2
1)
)

√

g
S4 . (5.30)
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This exactly cancels the |y1| term (for the − choice), as we have seen several times now

(see appendix C for this occurring at the level of the equations of motion). Therefore, the

full action reads

−K8

∫

d9ξe−φ
√

−gp − K8

∫

A9 =

−T̃

∫

d5ξ

[

(u2
y + y2

1)(1 + QfA0) +
2

9

R3
D4

uy
(1 + QfB0)η

µν∂µy1∂νy1 (5.31)

+
1

2

u3
y

UK
(1 + QfA0)ẏ

2
1 + Qf

(

u2
yA2 +

1

2

u3
y

UK
hyy2∂y2A0

)

y2
1

]

.

At this point it is sufficient to note that because all terms in the action were present before

the perturbation, we expect that wherever the perturbative analysis is valid, the stability

of the Sakai Sugimoto model is maintained. This is because whenever the perturbation

is small, the above action yields a positive definite hamiltonian, and so all fluctuations

will have positive energy. Further, as we have seen in the previous section, the equations

admit a perturbative solution about u = UK and so the perturbative analysis is valid from

u = UK up to u ≪ 1
Qf

, where for the previous sections analysis gives a good approximation

to the solutions.

6. Discussion and outlook

Here we will summarize our results. From the above calculations, we can see that when u

is large enough, the solutions tend to that of the decompactified case. The height of these

functions all grow as u and so to stay in the perturbative regime, we require that

uQf ≪ 1 → u ≪ 1

Qf
=

4πℓs

gsNf
→ u3 ≪ 64π3ℓ3

s

g3
sN

3
f

(6.1)

There is a further requirement, that the supergravity approximation is valid. This gives a

restriction

gs

(

u3

R3
D4

)
1
4

≪ 1 → u3 ≪ πNcℓ
3
s

g3
s

. (6.2)

One may easily compare now and see which condition is more stringent, as all coefficients

of gs and ℓs are the same. We find that generically

1

Q3
f

<
R3

D4

g4
s

→ 1 <
NcN

3
f

64π2
(6.3)

as we assume that Nc is large and Nf 6= 0 (see figure 7). However, we note that for small

gs the regime of validity of the perturbative backreaction (and so the validity of the probe

approximation) becomes arbitrarily large.

In figure 7, we have indicated a possible M-theory (11D SUGRA) lift, although some

caution is necessary, as no know lift D8 branes is understood in the context of 11D SUGRA,

at least for those described by the Romans type IIA.

We are also left with some obvious open questions:
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Qf

UK

f

f

1
D4R

g
s

4
3

 

   

    

  

non perturbative Q  regime

perturbative Q  regime

M−theory regime?

Figure 7: Range of validity for calculations

1. The topic of this paper has been the low temperature limit of the Sakai Sugimoto

model, and one may wish to know the qualitative differences between the low and high

temperature limits. Further, one may hope that the analysis of the high temperature

limit may be easier, as the D8 branes are transverse to a cylinder, rather than a cigar.

2. It would be interesting to address the backreaction of flavor branes in other brane

systems using the above techniques. While one may worry about the perturbation

breaking down near the brane for codimension other than 1, one may trust the can-

celation between the DBI and CS terms in the quadratic action for fluctuations.

We believe this to be true for the following reason: for a section of brane near a

smooth point in a manifold, it’s backreaction (non perturbative contributions in-

cluded) should behave just as the flat space case. In such a situation, a section of

parallel probe brane near by feels no force on it because the charge and mass (per

unit p volume) are the same. We may expect this to always be true. Further, in

supersymmetric situations, the supersymmetry of the backreaction may be of some

assistance in fixing all coefficients. We look forward to addressing these issues in

some future work.
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A. Massive type IIA equations of motion

We recall the following definitions

F̃2 = F2 + MB2

F̂4 = F4 +
1

2
MB2 ∧ B2 (A.1)

F̃4 = F4 − A1 ∧ H3 +
1

2
MB2 ∧ B2.

The equations of motion for the action SIIAM
(2.9) are

Rµν + 2∇µ∇νφ − 1

2!
Hµ

ρσHνρσ − e2φ 1

2 · 2!

(

2F̃µ
ρF̃νρ −

1

2
gµν F̃2 · F̃2

)

(A.2)

+e2φ 1

2 · 4!

(

4F̃µ
ρ1ρ2ρ3F̃νρ1ρ2ρ3 −

1

2
gµν F̃4 · F̃4

)

+
e2φ

2
gµνM2=0

R − 4∂φ · ∂φ − 1

2 · 3!H3 · H3 + 4gµν∇µ∇νφ=0 (A.3)

∇α1

(

e−2φHα1β1β2 + Aα2F̃
α1α2β1β2

)

− 1

2! · 4! · 4!√−g
ǫβ1β2···F(4)···F(4)···

−MF̃ β1β2 − 1

2
MBα1α2F̃

α1α2β1β2 − 1

2 · 2! · 4!√−g
ǫβ1β2···B···B···F̂(4)···=0 (A.4)

∇α1F̃
α1β1 − 1

3!
F̃ β1α2α3α4Hα2α3α4=0 (A.5)

∇α1F̃
α1β1β2β3 − 1

3! · 4!√−g
ǫβ1β2β3···H···F̂(4)···

− M

4!
√−g

ǫβ1β2β3···B···B···H···=0 (A.6)

−1

2
B · F̃2 −

3

4!
B···B···F̃

···
4

− 3

2! · 4! · 4!√−g
ǫ···B···B···B···F̃(4)··· − M + ∗F10=0

dM=0 (A.7)

where again ǫ takes values ±1. In the above, where we have written · · · there are indices

contracted. To reintroduce the (sub)superscripts, one puts in a set of indices in the super-

scripts, and then puts the same indices in the same order in the subscripts. In the above,

we note that M is constant, and may be considered piecewise constant in the presence of

sources.

B. Separating the equations

Here we deal with the Einstein equations and the dilaton equation, and explain how to
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separate them. There are 5 Einstein equations, and one for the dilaton, and we name them

EOMφ̂ = 2∂2
uφ̂ −

(

∂uφ̂
)2

− 2∂2
uB − 4 (∂uA)2 − 2 (∂uB)2 − 4 (∂uC)2

+2∂uφ̂∂uB − 2∂uφ̂∂uG + 2∂uB∂uG

+e(2G−2B)

(

2∂2
x4

φ̂(u, x4) −
(

∂x4 φ̂
)2

− 4 (∂x4A)2 − 2 (∂x4G)2 − 4 (∂x4C)2

+2∂x4 φ̂∂x4G − 2∂x4 φ̂∂x4G + 2∂x4B∂x4G − 2∂2
x4

G

)

(B.1)

+12e2G−2C − e2A−B+2G+2C+ 1
2
φ̂Qf∆

gs

EOMtt = 4e(G−B+φ̂)∂u

(

e(−G+B−φ̂)∂uA
)

+4e(2G−2B)e(B−G+φ̂)∂x4

(

e(−B+G−φ̂)∂x4A
)

(B.2)

−Q2
ce

4A+2G−4C+φ̂ − 2
e2A−B+2G+2C+ 1

2
φ̂Qf∆

gs

EOMxx = 4e(−B+G+φ̂)∂u

(

e(B−G−φ̂)∂uB
)

+4e(2G−2B)
(

4(∂x4A)2 + 4(∂x4C)2 + (∂x4G)2 + e(B)∂x4

(

e(−B)∂x4(G − φ̂)
))

−Q2
ce

4A+2G−4C+φ̂ + 2
e2A−B+2G+2C+ 1

2
φ̂Qf∆

gs
(B.3)

EOMuu = 4
(

4(∂uA)2 + 4(∂uC)2 + (∂uB)2 + e(G)∂u

(

e(−G)∂u(B − φ̂)
))

+4e(2G−2B)e(−G+B+φ̂)∂x4

(

e(G−B−φ̂)∂x4G
)

−Q2
ce

4A+2G−4C+φ̂ − 2
e2A−B+2G+2C+ 1

2
φ̂Qf∆

gs
(B.4)

EOMss = −4e(G−B+φ̂)∂u

(

e(−G+B−φ̂)∂uC
)

− 4e(2G−2B)e(B−G+φ̂)∂x4

(

e(−B+G−φ̂)∂x4C
)

+12e(2G−2C) − Q2
ce

4A+2G−4C+φ̂ + 2
e2A−B+2G+2C+ 1

2
φ̂Qf∆

gs
(B.5)

EOMm = −4∂x4A∂uA − 4∂x4C∂uC + ∂x4∂uφ̂ − ∂uB∂x4φ̂ − ∂x4G∂uφ̂ (B.6)

Each of the above equations is to be set to zero. The labeling we have used is that

the subscript φ̂ denotes to the φ equation of motion, tt denotes the time-time and xixi

Einstein equations (these are just one equation), xx denotes the x4x4 equation of motion,

uu the uu, ss the directions along the sphere, and m the mixed ux4 equation. Further, we

have taken ∆ = ∆(x4) to be a function only of x4.

We now wish to perturb the following equations about the background solution. For
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this purpose, we take the following expansion

A(u, x4) =
3

4
ln

(

3( 1
3
)u

Q
( 1
3
)

c g
( 1
3
)

s

)

+ QfA1(u, x4)

B(u, x4) =
3

4
ln

(

3( 1
3
)u

Q
( 1
3
)

c g
( 1
3
)

s

)

+
1

2
ln

(

1 − U3
K

u3

)

+ QfB1(u, x4)

G(u, x4) = −3

4
ln

(

3( 1
3
)u

Q
( 1
3
)

c g
( 1
3
)

s

)

− 1

2
ln

(

1 − U3
K

u3

)

+ QfG1(u, x4) (B.7)

C(u, x4) = −3

4
ln

(

3( 1
3
)u

Q
( 1
3
)

c g
( 1
3
)

s

)

+ ln(u) + QfC1(u, x4)

φ̂(u, x4) =
3

2
ln

(

3( 1
3
)u

Q
( 1
3
)

c g
( 1
3
)

s

)

− 4 ln(u) + 2 ln(gs) + Qf φ̂1(u, x4)

It is now straightforward (and rather unilluminating) to expand the equations of motion

and keep only the linear term in Qf . The only key point is that the source is already linear

in Qf and so one plugs in the background fields only to the exponential e2A−B+2G+2C+ 1
2
φ̂

appearing with ∆. Rather than writing this out explicitly, we will simply explain the steps

involved needed to separate the equations. Henceforth when we write EOMi we mean the

above equation of motion expanded to linear order in Qf . First, the most useful equation

when expanded is equation EOMm (B.6), and this becomes

−1

u
∂x4C1 +

5

2

1

u
∂x4G1 −

3

u
∂x4A1 + ∂x4∂uφ̂1 −

3

4
∂x4φ̂1

(u3 + U3
K)

u(u3 − U3
K)

= 0. (B.8)

This may be integrated to give

−1

u
C1 +

5

2

1

u
G1 −

3

u
A1 + ∂uφ̂1 −

3

4
φ̂1

(u3 + U3
K)

u(u3 − U3
K)

+ F (u) = 0. (B.9)

One may solve this for G1 and plug into the other equations. We will denote doing so as

EOMi|G1 . One may easily solve for F (u) now,

2EOMφ̂|G1 + EOMxx|G1 = −4

(

∂uF (u)u4 + 4F (u)u3 − U3
K∂uF (u)u − F (u)U3

K

)

u(u3 − U3
K)

(B.10)

and so

F (u) =
CF

u(u3 − U3
K)

. (B.11)

However one can easily see that this perturbation is simply taking UK → UK + δUK and

linearizing on δUK . This is because under this shift, neither φ̂1 nor A1 nor C1 is changed,

and so only G1 shifts in EOMm. The linear shift of G is given by
3U2

K
δUk

u3−U3
K

. Thus, we

may safely absorb F (u) into a shift into the definition of UK . If need be, we may always

reintroduce it by shifting equations that depend on B1 or G1 appropriately. Further, this is

only a zero mode contribution (in x4) and so will leave unaffected much of our discussion.
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For these reasons, we take F (u) = 0 for the time being, knowing how to reintroduce it later

if need be.

At this point we have eliminated 2 equations of motion at the cost of 1 function, which

puts us on course to decouple the equations.

Next, we make the simple observation that in all equations of motion EOMi|G1 only

∂uB1 and ∂2
uB1 appear. Thus, if we can solve for ∂uB1, we may eliminate B1 completely.

We do so by taking EOMxx|G1 − EOMuu|G1 and solving this for ∂uB1. This combination

still has a delta function, and so it is important at this step that ∆ is a function only of

x4 so that when the expression for ∂uB1 is substituted into ∂u∂uB1 no derivatives of delta

functions appear.

We have now eliminated 3 of the 6 total equations, with the remaining combinations be-

ing EOMtt|G1,∂uB1 , EOMxx|G1,∂uB1 = 1
2EOMφ̂|G1,∂uB1 = EOMuu|G1,∂uB1 , EOMss|G1,∂uB1 .

However, here we find that

2

5
EOMtt|G1,∂uB1 −

1

3
EOMxx|G1,∂uB1 −

2

15
EOMss|G1,∂uB1 = 0 (B.12)

Hence, we are left with only 2 independent equations for 3 unknown functions. This appears

to be under constrained, however, these equations are actually equations only of 2 linear

combinations of the 3 functions. The decoupled combinations may be written

−3EOMtt|G1,∂uB1−
3

2
EOMss|G1,∂uB1 = 3∂2

uF1+
3(4u3−U3

K)∂uF1

u(u3−U3
K)

+
gsQcu

3∂2
x4

F1

(u3−U3
K)2

(B.13)

− 54uF1

(u3−U3
K)

+
2u(Qcgs)

2
3

√
3

(u3−U3
K)

√

√

√

√

u

(Qcgs)
1
3

(

1− U3
K

u3

)∆

3

2
EOMtt|G1,∂uB1−3EOMss|G1,∂uB1 = 3∂2

uF2+
3(4u3−U3

K)∂uF2

u(u3−U3
K)

+
gsQcu

3∂2
x4

F2

(u3−U3
K)2

−4u(Qcgs)
2
3

√
3

(u3−U3
K)

√

√

√

√

u

(Qcgs)
1
3

(

1− U3
K

u3

)∆ (B.14)

where

A1 = −1

5
F1 +

1

10
F2 −

3

10
φ̂1 (B.15)

C1 =
1

10
F1 +

1

5
F2 −

1

10
φ̂1. (B.16)

We now turn to the question of fixing φ̂. For this purpose, we remember that we used the

combination

EOMxx − EOMuu =

4∂2
uφ̂1 −

4

3

u3Qcgs∂
2
x4

φ̂1
(

u3 − U3
K

)2 − 2 (4∂uC1 − 5∂uG1 − 5∂uB1 + 12∂uA1)

u

+
4
3u(Qcgs)

2
3

√
3

(u3 − U3
K)

√

√

√

√

u

(Qcgs)
1
3

(

1 − U3
K

u3

)∆ (B.17)
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to solve for ∂uB1. It is clear for our setup that φ̂ must have some “kink” part in its solution

to account for the delta function, as the only x4 derivatives that appear act on φ̂. However,

by adding a zero −8/u∂u(u
∫

EOMmdx4) to the above expression, we find

EOMxx − EOMuu − 8

u
∂u(u

∫

EOMm, dx4) =

−4∂2
uφ̂1 −

4

3

u3Qcgs∂
2
x4

φ̂1
(

u3 − U3
K

)2 − 2
(

u3 − 7U3
K

)

∂uφ̂1

u
(

u3 − U3
K

) − 36uU3
K φ̂1

(

u3 − U3
K

)2

+
4
3u(Qcgs)

2
3

√
3

(u3 − U3
K)

√

√

√

√

u

(Qcgs)
1
3

(

1 − U3
K

u3

)∆ +
10

u
(∂uB1 − ∂uG1) (B.18)

Now it becomes clear how one may maintain continuity of the functions and at the same

time separate the equations. We take B1 = G1 and then solve the remaining equation

above. One may have guessed this gauge, as one can bring any two dimensional metric to a

conformally flat one. We do not impose this on the full metric, however, as the polynomials

in u are easier to work with.

One more comment is in order. If one wishes, one may linearize on a small change

UK → UK + δUK . Under this, B1 and G1 transform differently. This can give a new source

term to the equation for φ̂1. However, this change only affects the zero mode (in x4) of φ̂1,

and hence will not affect the shape of φ̂1 in the x4 direction.

C. EOM for DBI+CS: details of x
4 = 0 solution

Here we find the equations of motion for the embedding functions Xµ resulting from the

action

−gsSB

Qf
=

∫

d9ξe−φ
√

−gp +

∫

A9, (C.1)

and explicitly show that x4 = 0 (πRx) is still a solution. We will find the equations of

motion for the first part, and then turn our attention to the second part of the above

action. First, we change frame by scaling the metric gstring = exp
(

2
9φ
)

G to write the first

part of the action

SD ≡
∫

d9ξ
√

−Gp (C.2)

The equations of motion for the fields Xµ(ξ) in the above action are

δSD

δXµ
= −

√

−GpGµν

(

∇2
pX

ν + Gab
p

∂Xα

∂ξa

∂Xβ

∂ξb
Γν

αβ

)

(C.3)

where objects with a p subscript are constructed using the pullback metric, and Γ is the

full spacetime Christoffel connection. We wish to ask whether Xi = ξi for i 6= x4 and

X4 = x4 =constant is a solution to the equations of motion. Consider first the Xk:

δSD

δXk
= −

√

−GpGki

(

1
√

−Gp

∂aG
ab
p

√

−Gp∂bX
i (C.4)

+Gab
p ∂aX

α∂bX
β 1

2
Giρ (Gρα,β + Gρβ,α − Gαβ,ρ)

)
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where we use ∂a as shorthand for a partial derivative in ξa, and we have used the fact that

our metric is diagonal. Choosing the Xi = ξi removes the derivative from the first part

of the equation. Also, the fact that G is diagonal, and identical to the pullback metric for

indices i, j, allows us to simplify the above further

= −
√

−GpG(p)ki

(

1
√

−Gp

∂iG
ii
p

√

−Gp (C.5)

+Gab
p ∂aX

α∂bX
β 1

2
Gii

p (δαiGii,N + δβiGii,M − Gαβ,i)

)

where i inside the parentheses are not summed. Note that the δNi projects the last remain-

ing metric down to the pullback metric, and we are left with

= −
√

−GpG(p)ki

(

1
√

−Gp

∂iG
ii
p

√

Gp + Gii
pGii

pGii,i −
1

2
Gii

pGab
p Gab,i

)

(C.6)

which simplifies further to

= −
√

−GpG(p)ki

(

Gii
(p),i +

1

2
Gii

pGab
p G(p)ab,i + Gii

pG
ii
pG(p)ii,i −

1

2
Gii

pG
ab
p Gab,i

)

. (C.7)

This is obviously zero: the metric is diagonal, so that

Gii
pG(p)ii = 1 → Gii

(p),iG(p)ii + Gii
pG(p)ii,i = 0 (C.8)

which then causes the first and third terms to cancel.

Hence, we are left with evaluating the X4 equation of motion:

−
√

−GpG44

(

∇2
pX

4 + Gab
p ∂aX

µ∂bX
νΓ4

µν

)

(C.9)

where we use the shorthand 4 to mean the x4 components.

The first term vanishes as X4 =constant. The second term we evaluate similarly to

the last discussion

−
√

−GpG44

(

∇2
pX

4 + Gab
p ∂aX

L∂bX
MΓ4

LM

)

= −
√

−GpG44

(

Gab
p ∂aX

µ∂bX
ν 1

2
G44 (δµ4G44,ν + δν4G44,µ − Gµν,4)

)

. (C.10)

This time, however, the δM4 and δN4 give zero (as the X4 =constant), and hence only the

last term remains

=
√

−Gp
1

2
G44G

44Gab
p G(p)ab,4

=
√

−Gp
1

√

−Gp

∂x4

√

−Gp (C.11)

=
√

−Gp∂x4 (4AG + GG + 4CG)
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where the subscripts are to denote the new frame that we switched to. Switching back to

the string frame metric, we find

√

−gpe
−φ∂x4

(

−1

2
φ̂ + G + 2A + 2C

)

. (C.12)

At this point we stop this analysis because we must also look at the equations of motion

coming from the CS action, as this has a cusp as well.

First, for the embeddings that we have chosen, the background form field is the fol-

lowing

F10 = ∗M = ∗Qf

gs
A9 = Ω9

Qf

gs
eB |x4|

A012356789 =
√

−gp
Qf

gs
eB|x4| (C.13)

where x4 ∈ {−πRx · · · πRx}, producing both the positive and negative delta function. In

the above, we must use only zeroth order metric functions, as the above statement is al-

ready linear in Qf . The function gp is the determinant of the metric setting x4 =constant,

i.e. the pullback metric on the D8s.

Next, we wish to consider the action

SA ≡
∫

D8
A9 =

1

9!

∫

d9ξAM1···M9∂a1X
M1 · · · ∂a9X

M9ǫa1···a9 (C.14)

where the epsilon takes values ±1. This is very easy to vary w.r.t. the fields XI :

δSA

XI
= − 9

9!
∂a1AIM2···M9∂a2X

M2 · · · ∂a9X
M9ǫa1···a9

+
1

9!
∂I(AM1···M9)∂a1X

M1 · · · ∂a9X
M9ǫa1···a9

(C.15)

Taking I = i to be one of the directions along the world volume coordinates, we see that

the first term and second term are identical. This is because in the first equation i and

a1 must agree to give a non zero answer (when contracting the epsilon). Of course in the

sum there are 8! occurences of this. Hence, the 9! cancels, and one simply gets ∂iA0...9|x4
,

where we use |x4 to indicate that the index for x4 has been omitted. The second term is

also equal to this, as the contraction yields a (9!). Hence the full equations of motion for

the XI fields along the volume coordinates vanish.

Next, taking the above equation of motion for the x4 direction, one finds only a con-

tribution from the second part, i.e.

δSA

Xx4
= ∂x4(A0···9|x4

) (C.16)

Therefore, the full equation of motion for the field X4 assuming that it is constant reads

−
(

√

−gpe
−φ∂x4

(

−1

2
φ̂ + G + 2A + 2C

)

± ∂x4(A0···9|x4
)

)

(C.17)
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where we have restored a − sign earlier omitted in front of the DBI action. Also, the ±
is to be read whether we are putting D8 or D̄8 branes in the background. Both are linear

order in Qf because to zeroth order none of the metric components depend on x4, and A9 is

already linear in Qf . Hence, all other metric components are set to being their background

values (except those with the x4 derivative). Considering the cusp solution near x4 = 0

one reads (factoring out Qf )

−
√

−gp
u− 3

4

gsR
− 3

4
D4

∂x4







u
3
2

(

1 − U3
K

u3

)
1
2 |x4|

(RD4)
3
2

+ O(x2
4)






(C.18)

−± ∂x4







√

−gp|x4|
1

gs

u
3
4

(

1 − U3
K

u3

)
1
2

R
3
4
D4

+ O(x2
4)







=−
√

−gp

u
3
4

(

1− U3
K

u3

)
1
2

R
3
4
D4gs

∂x4 (|x4|±|x4|)

where in the third line, we ignore the higher order in x4 corrections, as we will evaluate the

derivative at x4 = 0. Above we have also switched back to the more familiar gsQc = 3R3
D4

notation.
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